{"title":"Veillonella parvula promotes root caries development through interactions with Streptococcus mutans and Candida albicans","authors":"Guo Li, Yuqiu Liu, Mengdie Zhang, Jia Ning, Linrui Wu, Lixiang Jian, Hongkun Wu, Xingqun Cheng","doi":"10.1111/1751-7915.14547","DOIUrl":null,"url":null,"abstract":"<p>Root caries is a subtype of dental caries that predominantly impacts older adults. The occurrence and progression of root caries are associated with the homeostasis of dental plaque biofilm, and microbial synergistic and antagonistic interactions in the biofilm play a significant role in maintaining the oral microecological balance. The objective of the current study was to investigate the role of <i>Veillonella parvula</i> in the microbial interactions and the pathogenesis of root caries. The analysis of clinical samples from patients with/without root caries revealed that <i>Veillonella</i> and <i>V. parvula</i> were abundant in the saliva of patients with root caries. More importantly, a significantly increased colonization of <i>V. parvula</i> was observed in root carious lesions. Further in vitro biofilm and animal study showed that <i>V. parvula</i> colonization increased the abundance and virulence of <i>Streptococcus mutans</i> and <i>Candida albicans</i>, leading to the formation of a polymicrobial biofilm with enhanced anti-stress capacity and cariogenicity, consequently exacerbating the severity of carious lesions. Our results indicate the critical role of <i>V. parvula</i> infection in the occurrence of root caries, providing a new insight for the etiological investigation and prevention of root caries.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 8","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.14547","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14547","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Root caries is a subtype of dental caries that predominantly impacts older adults. The occurrence and progression of root caries are associated with the homeostasis of dental plaque biofilm, and microbial synergistic and antagonistic interactions in the biofilm play a significant role in maintaining the oral microecological balance. The objective of the current study was to investigate the role of Veillonella parvula in the microbial interactions and the pathogenesis of root caries. The analysis of clinical samples from patients with/without root caries revealed that Veillonella and V. parvula were abundant in the saliva of patients with root caries. More importantly, a significantly increased colonization of V. parvula was observed in root carious lesions. Further in vitro biofilm and animal study showed that V. parvula colonization increased the abundance and virulence of Streptococcus mutans and Candida albicans, leading to the formation of a polymicrobial biofilm with enhanced anti-stress capacity and cariogenicity, consequently exacerbating the severity of carious lesions. Our results indicate the critical role of V. parvula infection in the occurrence of root caries, providing a new insight for the etiological investigation and prevention of root caries.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes