Xin-Yue Lou, Kun Zhang, Yujie Bai, Siyuan Zhang, Yuanyuan Li, Ying-Wei Yang
{"title":"Self-Assembled Nanohelixes Driven by Host-Guest Interactions and Metal Coordination.","authors":"Xin-Yue Lou, Kun Zhang, Yujie Bai, Siyuan Zhang, Yuanyuan Li, Ying-Wei Yang","doi":"10.1002/anie.202414611","DOIUrl":null,"url":null,"abstract":"<p><p>Helical nanostructures fabricated via the self-assembly of artificial motifs have been a captivating subject because of their structural aesthetics and multiple functionalities. Herein, we report the facile construction of a self-assembled nanohelix (NH) by leveraging an achiral aggregation-induced emission (AIE) luminogen (G) and pillar[5]arene (H), driven by host-guest interactions and metal coordination. Inspired by the \"sergeants and soldiers\" effect and \"majority rule\" principle, the host-guest complexation between G and H is employed to fixate the twisted conformation of G for the generation of \"contortion sites\", which further induced the emergence of helicity as the 1D assemblies are formed via Ag(I) coordination and hexagonally packed into nano-sized fibers. The strategy has proved feasible in both homogeneous and heterogeneous syntheses. Along with the formation of NH, boosted luminescence and enhanced productivity of reactive oxygen species (ROS) are afforded because of the efficient restriction on G, indicating the concurrent regulation of NH's morphology and photophysical properties by supramolecular assembly. In addition, NH also exhibits the capacity for bacteria imaging and photodynamic antibacterial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli).</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202414611"},"PeriodicalIF":16.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202414611","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Helical nanostructures fabricated via the self-assembly of artificial motifs have been a captivating subject because of their structural aesthetics and multiple functionalities. Herein, we report the facile construction of a self-assembled nanohelix (NH) by leveraging an achiral aggregation-induced emission (AIE) luminogen (G) and pillar[5]arene (H), driven by host-guest interactions and metal coordination. Inspired by the "sergeants and soldiers" effect and "majority rule" principle, the host-guest complexation between G and H is employed to fixate the twisted conformation of G for the generation of "contortion sites", which further induced the emergence of helicity as the 1D assemblies are formed via Ag(I) coordination and hexagonally packed into nano-sized fibers. The strategy has proved feasible in both homogeneous and heterogeneous syntheses. Along with the formation of NH, boosted luminescence and enhanced productivity of reactive oxygen species (ROS) are afforded because of the efficient restriction on G, indicating the concurrent regulation of NH's morphology and photophysical properties by supramolecular assembly. In addition, NH also exhibits the capacity for bacteria imaging and photodynamic antibacterial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli).
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.