Mateusz Kędziora, Andrzej Opala, Rosanna Mastria, Luisa De Marco, Mateusz Król, Karolina Łempicka-Mirek, Krzysztof Tyszka, Marek Ekielski, Marek Guziewicz, Karolina Bogdanowicz, Anna Szerling, Helgi Sigurðsson, Tomasz Czyszanowski, Jacek Szczytko, Michał Matuszewski, Daniele Sanvitto, Barbara Piętka
{"title":"Predesigned perovskite crystal waveguides for room-temperature exciton–polariton condensation and edge lasing","authors":"Mateusz Kędziora, Andrzej Opala, Rosanna Mastria, Luisa De Marco, Mateusz Król, Karolina Łempicka-Mirek, Krzysztof Tyszka, Marek Ekielski, Marek Guziewicz, Karolina Bogdanowicz, Anna Szerling, Helgi Sigurðsson, Tomasz Czyszanowski, Jacek Szczytko, Michał Matuszewski, Daniele Sanvitto, Barbara Piętka","doi":"10.1038/s41563-024-01980-3","DOIUrl":null,"url":null,"abstract":"Perovskite crystals—with their exceptional nonlinear optical properties, lasing and waveguiding capabilities—offer a promising platform for integrated photonic circuitry within the strong-coupling regime at room temperature. Here we demonstrate a versatile template-assisted method to efficiently fabricate large-scale waveguiding perovskite crystals of arbitrarily predefined geometry such as microwires, couplers and splitters. We non-resonantly stimulate a condensate of waveguided exciton–polaritons resulting in bright polariton lasing from the transverse interfaces and corners of our perovskite microstructures. Large blueshifts with excitation power and high mutual coherence between the different edge and corner lasing signals are detected in the far-field photoluminescence, implying that a spatially extended condensates of coherent polaritons has formed. The condensate polaritons are found to propagate over long distances in the wires from the excitation spot and can couple to neighbouring wires through large air gaps, making our platform promising for integrated polaritonic circuitry and on-chip optical devices with strong nonlinearities. A method to fabricate arbitrarily shaped perovskite crystals is measured, apt for the realization of integrated photonic circuitry, demonstrating room-temperature waveguided exciton–polariton condensation and bright polariton edge lasing.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1515-1522"},"PeriodicalIF":37.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-024-01980-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite crystals—with their exceptional nonlinear optical properties, lasing and waveguiding capabilities—offer a promising platform for integrated photonic circuitry within the strong-coupling regime at room temperature. Here we demonstrate a versatile template-assisted method to efficiently fabricate large-scale waveguiding perovskite crystals of arbitrarily predefined geometry such as microwires, couplers and splitters. We non-resonantly stimulate a condensate of waveguided exciton–polaritons resulting in bright polariton lasing from the transverse interfaces and corners of our perovskite microstructures. Large blueshifts with excitation power and high mutual coherence between the different edge and corner lasing signals are detected in the far-field photoluminescence, implying that a spatially extended condensates of coherent polaritons has formed. The condensate polaritons are found to propagate over long distances in the wires from the excitation spot and can couple to neighbouring wires through large air gaps, making our platform promising for integrated polaritonic circuitry and on-chip optical devices with strong nonlinearities. A method to fabricate arbitrarily shaped perovskite crystals is measured, apt for the realization of integrated photonic circuitry, demonstrating room-temperature waveguided exciton–polariton condensation and bright polariton edge lasing.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.