Adsorbent prepared from bentonite to remove diethyl phthalate in aqueous solution

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED
Nhat-Thien Nguyen , Pin-Ru Chen , Chang-Tang Chang , Hua-Wei Chen , Gui-Bing Hong
{"title":"Adsorbent prepared from bentonite to remove diethyl phthalate in aqueous solution","authors":"Nhat-Thien Nguyen ,&nbsp;Pin-Ru Chen ,&nbsp;Chang-Tang Chang ,&nbsp;Hua-Wei Chen ,&nbsp;Gui-Bing Hong","doi":"10.1016/j.micromeso.2024.113293","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, zeolite synthesized based on bentonite via the alkali fusion-hydrothermal method, and the effects of different synthesis parameters on the crystallinity and silicon-aluminum ratio of zeolite were investigated. The zeolite particles were modified by cationic surfactant and magnetized to prepare a MCTAB-BZ composite, which was then applied to the adsorption of diethyl phthalate (DEP) from aqueous solution. The effects of operating factors, including pH value, adsorption dosage, temperature, and adsorption time on the kinetic and isotherm adsorption behavior were studied. Highly crystalline ANA-zeolite can be prepared with the alkali content of 1:1, the aging time of 20 h, the aging water content of 1:15, and the crystallization time of 24 h. The results of the adsorption experiment show that the novel adsorbent-MCTAB-BZ composite shows the best adsorption capacity when the adsorption dosage is 6.25 g/L, temperature is 30 °C and adsorption time is 180 min at the original pH value of the aqueous solution. The adsorption results are presented well by the pseudo-second-order kinetic model and the Freundlich isotherm model.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"379 ","pages":"Article 113293"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003159","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, zeolite synthesized based on bentonite via the alkali fusion-hydrothermal method, and the effects of different synthesis parameters on the crystallinity and silicon-aluminum ratio of zeolite were investigated. The zeolite particles were modified by cationic surfactant and magnetized to prepare a MCTAB-BZ composite, which was then applied to the adsorption of diethyl phthalate (DEP) from aqueous solution. The effects of operating factors, including pH value, adsorption dosage, temperature, and adsorption time on the kinetic and isotherm adsorption behavior were studied. Highly crystalline ANA-zeolite can be prepared with the alkali content of 1:1, the aging time of 20 h, the aging water content of 1:15, and the crystallization time of 24 h. The results of the adsorption experiment show that the novel adsorbent-MCTAB-BZ composite shows the best adsorption capacity when the adsorption dosage is 6.25 g/L, temperature is 30 °C and adsorption time is 180 min at the original pH value of the aqueous solution. The adsorption results are presented well by the pseudo-second-order kinetic model and the Freundlich isotherm model.

Abstract Image

用膨润土制备的吸附剂去除水溶液中的邻苯二甲酸二乙酯
本研究以膨润土为原料,通过碱熔-水热法合成了沸石,并研究了不同合成参数对沸石结晶度和硅铝比的影响。通过阳离子表面活性剂对沸石颗粒进行改性和磁化,制备了 MCTAB-BZ 复合材料,并将其应用于水溶液中邻苯二甲酸二乙酯(DEP)的吸附。研究了 pH 值、吸附剂量、温度和吸附时间等操作因素对动力学和等温线吸附行为的影响。吸附实验结果表明,在水溶液原始 pH 值下,当吸附量为 6.25 g/L、温度为 30 °C、吸附时间为 180 min 时,新型吸附剂-MCTAB-BZ 复合材料的吸附能力最佳。伪二阶动力学模型和 Freundlich 等温线模型很好地反映了吸附结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信