Automated quantification of SARS-CoV-2 pneumonia with large vision model knowledge adaptation

IF 2.9 Q2 INFECTIOUS DISEASES
Zhaohui Liang, Zhiyun Xue, Sivaramakrishnan Rajaraman, Sameer Antani
{"title":"Automated quantification of SARS-CoV-2 pneumonia with large vision model knowledge adaptation","authors":"Zhaohui Liang,&nbsp;Zhiyun Xue,&nbsp;Sivaramakrishnan Rajaraman,&nbsp;Sameer Antani","doi":"10.1016/j.nmni.2024.101457","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Large vision models (LVM) pretrained by large datasets have demonstrated their enormous capacity to understand visual patterns and capture semantic information from images. We proposed a novel method of knowledge domain adaptation with pretrained LVM for a low-cost artificial intelligence (AI) model to quantify the severity of SARS-CoV-2 pneumonia based on frontal chest X-ray (CXR) images.</p></div><div><h3>Methods</h3><p>Our method used the pretrained LVMs as the primary feature extractor and self-supervised contrastive learning for domain adaptation. An encoder with a 2048-dimensional feature vector output was first trained by self-supervised learning for knowledge domain adaptation. Then a multi-layer perceptron (MLP) was trained for the final severity prediction. A dataset with 2599 CXR images was used for model training and evaluation.</p></div><div><h3>Results</h3><p>The model based on the pretrained vision transformer (ViT) and self-supervised learning achieved the best performance in cross validation, with mean squared error (MSE) of 23.83 (95 % CI 22.67–25.00) and mean absolute error (MAE) of 3.64 (95 % CI 3.54–3.73). Its prediction correlation has the <span><math><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> of 0.81 (95 % CI 0.79–0.82) and Spearman ρ of 0.80 (95 % CI 0.77–0.81), which are comparable to the current state-of-the-art (SOTA) methods trained by much larger CXR datasets.</p></div><div><h3>Conclusion</h3><p>The proposed new method has achieved the SOTA performance to quantify the severity of SARS-CoV-2 pneumonia at a significantly lower cost. The method can be extended to other infectious disease detection or quantification to expedite the application of AI in medical research.</p></div>","PeriodicalId":38074,"journal":{"name":"New Microbes and New Infections","volume":"62 ","pages":"Article 101457"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2052297524002415/pdfft?md5=89933a142f91d984f36351709bf18673&pid=1-s2.0-S2052297524002415-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Microbes and New Infections","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2052297524002415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Large vision models (LVM) pretrained by large datasets have demonstrated their enormous capacity to understand visual patterns and capture semantic information from images. We proposed a novel method of knowledge domain adaptation with pretrained LVM for a low-cost artificial intelligence (AI) model to quantify the severity of SARS-CoV-2 pneumonia based on frontal chest X-ray (CXR) images.

Methods

Our method used the pretrained LVMs as the primary feature extractor and self-supervised contrastive learning for domain adaptation. An encoder with a 2048-dimensional feature vector output was first trained by self-supervised learning for knowledge domain adaptation. Then a multi-layer perceptron (MLP) was trained for the final severity prediction. A dataset with 2599 CXR images was used for model training and evaluation.

Results

The model based on the pretrained vision transformer (ViT) and self-supervised learning achieved the best performance in cross validation, with mean squared error (MSE) of 23.83 (95 % CI 22.67–25.00) and mean absolute error (MAE) of 3.64 (95 % CI 3.54–3.73). Its prediction correlation has the R2 of 0.81 (95 % CI 0.79–0.82) and Spearman ρ of 0.80 (95 % CI 0.77–0.81), which are comparable to the current state-of-the-art (SOTA) methods trained by much larger CXR datasets.

Conclusion

The proposed new method has achieved the SOTA performance to quantify the severity of SARS-CoV-2 pneumonia at a significantly lower cost. The method can be extended to other infectious disease detection or quantification to expedite the application of AI in medical research.

利用大型视觉模型知识适配自动量化 SARS-CoV-2 肺炎
背景通过大型数据集进行预训练的大型视觉模型(LVM)已经证明了其理解视觉模式和从图像中捕捉语义信息的巨大能力。我们提出了一种利用预训练的 LVM 进行知识领域适应的新方法,用于一种低成本的人工智能(AI)模型,根据正面胸部 X 光(CXR)图像量化 SARS-CoV-2 肺炎的严重程度。首先通过自监督学习训练一个具有 2048 维特征向量输出的编码器,用于知识领域适应。然后训练多层感知器(MLP),以进行最终的严重程度预测。结果基于预训练视觉转换器(ViT)和自我监督学习的模型在交叉验证中取得了最佳性能,平均平方误差(MSE)为 23.83(95 % CI 22.67-25.00),平均绝对误差(MAE)为 3.64(95 % CI 3.54-3.73)。其预测相关性的 R2 为 0.81 (95 % CI 0.79-0.82),Spearman ρ 为 0.80 (95 % CI 0.77-0.81),与目前使用更大 CXR 数据集训练的最先进 (SOTA) 方法相当。该方法可扩展到其他传染病的检测或量化,以加快人工智能在医学研究中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Microbes and New Infections
New Microbes and New Infections Medicine-Infectious Diseases
CiteScore
10.00
自引率
2.50%
发文量
91
审稿时长
114 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信