Ziran Min , Swapna Gokhale , Shashank Shekhar , Charif Mahmoudi , Zhuangwei Kang , Yogesh Barve , Aniruddha Gokhale
{"title":"Enhancing 5G network slicing for IoT traffic with a novel clustering framework","authors":"Ziran Min , Swapna Gokhale , Shashank Shekhar , Charif Mahmoudi , Zhuangwei Kang , Yogesh Barve , Aniruddha Gokhale","doi":"10.1016/j.pmcj.2024.101974","DOIUrl":null,"url":null,"abstract":"<div><p>The current extensive deployment of IoT devices, crucial for enhancing smart computing applications in diverse domains, necessitates the utilization of essential 5G features, notably network slicing, to ensure the provision of distinct and reliable services. However, the voluminous, dynamic, and varied nature of IoT traffic introduces complexities in network flow classification, traffic analysis, and the accurate determination of network requirements. These complexities pose a significant challenge in effectively provisioning 5G network slices across various applications. To address this, we propose an innovative approach for network traffic classification, comprising a pipeline that integrates Principal Component Analysis (PCA) with KMeans clustering and the Hellinger distance measure. The application of PCA as the initial step effectively reduces the dimensionality of the data while retaining most of the original information, which significantly lowers the computational demands for the subsequent KMeans clustering phase. KMeans, an unsupervised learning method, eliminates the labor-intensive and error-prone process of data labeling. Following this, a Hellinger distance-based recursive KMeans algorithm is employed to merge similar clusters, aiding in the determination of the optimal number of clusters. This results in final clustering outcomes that are both compact and intuitively interpretable, overcoming the inherent limitations of the traditional KMeans algorithm, such as its sensitivity to initial conditions and the requirement for manually specifying the number of clusters. An evaluation of our method using a real-world IoT dataset has shown that our pipeline can efficiently represent the dataset in three distinct clusters. The characteristics of these clusters can be readily understood and directly correlated with various types of network slices in the 5G network, demonstrating the efficacy of our approach in managing the complexities of IoT traffic for 5G network slice provisioning.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574119224000993/pdfft?md5=35a9df2be399c91dc234552871f71dd2&pid=1-s2.0-S1574119224000993-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119224000993","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The current extensive deployment of IoT devices, crucial for enhancing smart computing applications in diverse domains, necessitates the utilization of essential 5G features, notably network slicing, to ensure the provision of distinct and reliable services. However, the voluminous, dynamic, and varied nature of IoT traffic introduces complexities in network flow classification, traffic analysis, and the accurate determination of network requirements. These complexities pose a significant challenge in effectively provisioning 5G network slices across various applications. To address this, we propose an innovative approach for network traffic classification, comprising a pipeline that integrates Principal Component Analysis (PCA) with KMeans clustering and the Hellinger distance measure. The application of PCA as the initial step effectively reduces the dimensionality of the data while retaining most of the original information, which significantly lowers the computational demands for the subsequent KMeans clustering phase. KMeans, an unsupervised learning method, eliminates the labor-intensive and error-prone process of data labeling. Following this, a Hellinger distance-based recursive KMeans algorithm is employed to merge similar clusters, aiding in the determination of the optimal number of clusters. This results in final clustering outcomes that are both compact and intuitively interpretable, overcoming the inherent limitations of the traditional KMeans algorithm, such as its sensitivity to initial conditions and the requirement for manually specifying the number of clusters. An evaluation of our method using a real-world IoT dataset has shown that our pipeline can efficiently represent the dataset in three distinct clusters. The characteristics of these clusters can be readily understood and directly correlated with various types of network slices in the 5G network, demonstrating the efficacy of our approach in managing the complexities of IoT traffic for 5G network slice provisioning.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.