Assemble of porous heterostructure thin film through CuS passivation for efficient electron transport in dye-sensitized solar cells

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mojeed A. Agoro, Edson L. Meyer, Olufemi I. Olayiwola
{"title":"Assemble of porous heterostructure thin film through CuS passivation for efficient electron transport in dye-sensitized solar cells","authors":"Mojeed A. Agoro,&nbsp;Edson L. Meyer,&nbsp;Olufemi I. Olayiwola","doi":"10.1186/s11671-024-04082-w","DOIUrl":null,"url":null,"abstract":"<div><p>Three different modified solar cells have been passivated with copper sulfide (CuS) on a TiO<sub>2</sub> electrode and manganese sulfide (γ‐MnS) hexagonal as photon absorbers. The MnS were prepared using (a-c) <i>bis</i>(<i>N</i>‐Piperl‐<i>N</i>‐<i>p</i>‐anisildithiocarbamato)Manganese(II) Complexes Mn[<i>N</i>-Piper‐<i>N</i>‐<i>p</i>‐Anisdtc] as (MnS_1), <i>N</i>‐<i>p</i>-anisidinyldithiocarbamato Mn[<i>N</i>‐<i>p</i>-anisdtc] as (MnS_2) and <i>N</i>‐piperidinyldithiocarbamato Mn[<i>N</i>‐piperdtc] as (MnS_3). The corresponding passivated films were denoted as CM-1, CM-2, and CM-3. The influence of passivation on the structural, optical, morphological, and photochemical properties of the prepared devices has been investigated. Raman spectra show that the combination of this heterostructure is triggered by the variation in particle size and surface effect, thus resulting in good electronic conductivity. The narrow band gaps could be attributed to good interaction between the passivative materials on the TiO<sub>2</sub> surface. CM-2 cells, stability studies show that the cell is polarized and current flows due to electron migration across the electrolyte and interfaces at this steady state. The cyclic voltammetry (CV) curve for the CM-3 with the highest current density promotes the electrocatalytic activity of the assembled solar cell. The catalytic reactions are further confirmed by the interfacial electron lifetimes in the Bode plots and the impedance spectra. The current–voltage (<i>J–V)</i> analysis suggests that the electrons in the conduction band of TiO<sub>2</sub>/CuS recombine with the semiconductor quantum dots (QDs) and the iodolyte HI-30 electrolyte, resulting in 5.20–6.85% photo-conversions.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333774/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04082-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Three different modified solar cells have been passivated with copper sulfide (CuS) on a TiO2 electrode and manganese sulfide (γ‐MnS) hexagonal as photon absorbers. The MnS were prepared using (a-c) bis(N‐Piperl‐Np‐anisildithiocarbamato)Manganese(II) Complexes Mn[N-Piper‐Np‐Anisdtc] as (MnS_1), Np-anisidinyldithiocarbamato Mn[Np-anisdtc] as (MnS_2) and N‐piperidinyldithiocarbamato Mn[N‐piperdtc] as (MnS_3). The corresponding passivated films were denoted as CM-1, CM-2, and CM-3. The influence of passivation on the structural, optical, morphological, and photochemical properties of the prepared devices has been investigated. Raman spectra show that the combination of this heterostructure is triggered by the variation in particle size and surface effect, thus resulting in good electronic conductivity. The narrow band gaps could be attributed to good interaction between the passivative materials on the TiO2 surface. CM-2 cells, stability studies show that the cell is polarized and current flows due to electron migration across the electrolyte and interfaces at this steady state. The cyclic voltammetry (CV) curve for the CM-3 with the highest current density promotes the electrocatalytic activity of the assembled solar cell. The catalytic reactions are further confirmed by the interfacial electron lifetimes in the Bode plots and the impedance spectra. The current–voltage (J–V) analysis suggests that the electrons in the conduction band of TiO2/CuS recombine with the semiconductor quantum dots (QDs) and the iodolyte HI-30 electrolyte, resulting in 5.20–6.85% photo-conversions.

Abstract Image

通过 CuS 钝化组装多孔异质结构薄膜,在染料敏化太阳能电池中实现高效电子传输。
在二氧化钛(TiO2)电极上用硫化铜(CuS)进行钝化,并用硫化锰(γ-MnS)六边形作为光子吸收剂,制成了三种不同的改性太阳能电池。MnS 的制备采用了 (a-c) 双(N-哌啶-N-对甲氧基二硫代氨基甲酸)锰(II)配合物 Mn[N-Piper-N-p-Anisdtc] 作为 (MnS_1),N-对甲氧基二硫代氨基甲酸 Mn[N-p-anisdtc] 作为 (MnS_2),N-哌啶基二硫代氨基甲酸 Mn[N-piperdtc] 作为 (MnS_3)。相应的钝化薄膜分别称为 CM-1、CM-2 和 CM-3。研究了钝化对所制备器件的结构、光学、形态和光化学特性的影响。拉曼光谱显示,这种异质结构的组合是由粒度变化和表面效应引发的,因此具有良好的电子导电性。窄带隙可归因于二氧化钛表面的钝化材料之间良好的相互作用。对 CM-2 电池的稳定性研究表明,在这种稳定状态下,电池是极化的,电流流动是由于电子在电解质和界面上的迁移。电流密度最高的 CM-3 的循环伏安曲线促进了组装太阳能电池的电催化活性。Bode 图和阻抗谱中的界面电子寿命进一步证实了催化反应。电流-电压(J-V)分析表明,TiO2/CuS 传导带中的电子与半导体量子点(QDs)和碘溶液 HI-30 电解质重新结合,产生了 5.20%-6.85% 的光电转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信