Improvement in CPP-GMR read head sensor performance using [001]-oriented polycrystalline half-metallic Heusler alloy Co2FeGa0.5Ge0.5 and CoFe bilayer electrode.
IF 7.4 3区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Improvement in CPP-GMR read head sensor performance using [001]-oriented polycrystalline half-metallic Heusler alloy Co<sub>2</sub>FeGa<sub>0.5</sub>Ge<sub>0.5</sub> and CoFe bilayer electrode.","authors":"Dolly Taparia, Taisuke Sasaki, Tomoya Nakatani, Hirofumi Suto, Yoshio Miura, Zehao Li, Varun Kumar Kushwaha, Kazuumi Inubushi, Shinto Ichikawa, Katsuyuki Nakada, Tomoyuki Sasaki, Seiji Mitani, Yuya Sakuraba","doi":"10.1080/14686996.2024.2388503","DOIUrl":null,"url":null,"abstract":"<p><p>A current-perpendicular-to-plane giant magnetoresistive (CPP-GMR) device with a half-metallic electrode is one of the most promising candidates of next-generation read head for hard disk drive. In this study, we fabricate [001]-oriented polycrystalline CPP-GMR devices with the normal ferromagnet (NFM) CoFe/half-metallic ferromagnet (HMFM) Co<sub>2</sub>FeGa<sub>0.5</sub>Ge<sub>0.5</sub> (CFGG) bilayer electrodes to enhance the magnetoresistance (MR) ratio by large interfacial spin-dependent scattering at the NFM/HMFM interface. The CoFe/CFGG bilayer electrode provides the additional large interfacial spin-dependent scattering and achieves high <i>MR</i> ratio of 22.7% with the CoFe(4.5 nm)/CFGG(2.5 nm) bilayer electrodes, which is almost three(two) times larger than the <i>MR</i> ratio with the single CoFe(CFGG) (7 nm) electrodes. The bias voltage dependent study revealed an additional advantage of increasing the output voltage |Δ<i>V</i>| by using the CoFe/CFGG bilayer due to the improvement of the endurance against spin-transfer torque under high bias current. A maximum output voltage <math> <mrow> <msub> <mfenced><mrow><mi>Δ</mi> <mi>V</mi></mrow> </mfenced> <mrow> <mrow><mrow><mi>max</mi></mrow> </mrow> </mrow> </msub> </mrow> </math> of 6.5 mV was obtained with the CoFe(5.5 nm)/CFGG(1.5 nm) electrodes, which is the highest ever reported in the CPP-GMR devices with a uniform metallic spacer including high-quality epitaxial devices.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"25 1","pages":"2388503"},"PeriodicalIF":7.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328801/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2388503","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A current-perpendicular-to-plane giant magnetoresistive (CPP-GMR) device with a half-metallic electrode is one of the most promising candidates of next-generation read head for hard disk drive. In this study, we fabricate [001]-oriented polycrystalline CPP-GMR devices with the normal ferromagnet (NFM) CoFe/half-metallic ferromagnet (HMFM) Co2FeGa0.5Ge0.5 (CFGG) bilayer electrodes to enhance the magnetoresistance (MR) ratio by large interfacial spin-dependent scattering at the NFM/HMFM interface. The CoFe/CFGG bilayer electrode provides the additional large interfacial spin-dependent scattering and achieves high MR ratio of 22.7% with the CoFe(4.5 nm)/CFGG(2.5 nm) bilayer electrodes, which is almost three(two) times larger than the MR ratio with the single CoFe(CFGG) (7 nm) electrodes. The bias voltage dependent study revealed an additional advantage of increasing the output voltage |ΔV| by using the CoFe/CFGG bilayer due to the improvement of the endurance against spin-transfer torque under high bias current. A maximum output voltage of 6.5 mV was obtained with the CoFe(5.5 nm)/CFGG(1.5 nm) electrodes, which is the highest ever reported in the CPP-GMR devices with a uniform metallic spacer including high-quality epitaxial devices.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.