Significant age-related differences between lower leg muscles of older and younger female subjects detected by ultrashort echo time magnetization transfer modeling.

IF 2.7 4区 医学 Q2 BIOPHYSICS
NMR in Biomedicine Pub Date : 2024-12-01 Epub Date: 2024-08-18 DOI:10.1002/nbm.5237
Saeed Jerban, Hamidreza Shaterian Mohammadi, Jiyo S Athertya, Amir Masoud Afsahi, Niloofar Shojaeiadib, Dina Moazamian, Samuel R Ward, Gina Woods, Christine B Chung, Jiang Du, Eric Y Chang
{"title":"Significant age-related differences between lower leg muscles of older and younger female subjects detected by ultrashort echo time magnetization transfer modeling.","authors":"Saeed Jerban, Hamidreza Shaterian Mohammadi, Jiyo S Athertya, Amir Masoud Afsahi, Niloofar Shojaeiadib, Dina Moazamian, Samuel R Ward, Gina Woods, Christine B Chung, Jiang Du, Eric Y Chang","doi":"10.1002/nbm.5237","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetization transfer (MT) magnetic resonance imaging (MRI) can be used to estimate the fraction of water and macromolecular proton pools in tissues. MT modeling paired with ultrashort echo time acquisition (UTE-MT modeling) has been proposed to improve the evaluation of the myotendinous junction and fibrosis in muscle tissues, which the latter increases with aging. This study aimed to determine if the UTE-MT modeling technique is sensitive to age-related changes in the skeletal muscles of the lower leg. Institutional review board approval was obtained, and all recruited subjects provided written informed consent. The legs of 31 healthy younger (28.1 ± 6.1 years old, BMI = 22.3 ± 3.5) and 20 older (74.7 ± 5.5 years old, BMI = 26.7 ± 5.9) female subjects were imaged using UTE sequences on a 3 T MRI scanner. MT ratio (MTR), macromolecular fraction (MMF), macromolecular T2 (T2-MM), and water T2 (T2-W) were calculated using UTE-MT modeling for the anterior tibialis (ATM), posterior tibialis (PTM), soleus (SM), and combined lateral muscles. Results were compared between groups using the Wilcoxon rank sum test. Three independent observers selected regions of interest (ROIs) and processed UTE-MRI images separately, and the intraclass correlation coefficient (ICC) was calculated for a reproducibility study. Significantly lower mean MTR and MMF values were present in the older compared with the younger group in all studied lower leg muscles. T2-MM showed significantly lower values in the older group only for PTM and SM muscles. In contrast, T2-W showed significantly higher values in the older group. The age-related differences were more pronounced for MMF (-17 to -19%) and T2-W (+20 to 47%) measurements in all muscle groups compared with other investigated MR measures. ICCs were higher than 0.93, indicating excellent consistency between the ROI selection and MRI measurements of independent readers. As demonstrated by significant differences between younger and older groups, this research emphasizes the potential of UTE-MT MRI techniques in evaluating age-related skeletal muscle changes.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5237"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5237","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetization transfer (MT) magnetic resonance imaging (MRI) can be used to estimate the fraction of water and macromolecular proton pools in tissues. MT modeling paired with ultrashort echo time acquisition (UTE-MT modeling) has been proposed to improve the evaluation of the myotendinous junction and fibrosis in muscle tissues, which the latter increases with aging. This study aimed to determine if the UTE-MT modeling technique is sensitive to age-related changes in the skeletal muscles of the lower leg. Institutional review board approval was obtained, and all recruited subjects provided written informed consent. The legs of 31 healthy younger (28.1 ± 6.1 years old, BMI = 22.3 ± 3.5) and 20 older (74.7 ± 5.5 years old, BMI = 26.7 ± 5.9) female subjects were imaged using UTE sequences on a 3 T MRI scanner. MT ratio (MTR), macromolecular fraction (MMF), macromolecular T2 (T2-MM), and water T2 (T2-W) were calculated using UTE-MT modeling for the anterior tibialis (ATM), posterior tibialis (PTM), soleus (SM), and combined lateral muscles. Results were compared between groups using the Wilcoxon rank sum test. Three independent observers selected regions of interest (ROIs) and processed UTE-MRI images separately, and the intraclass correlation coefficient (ICC) was calculated for a reproducibility study. Significantly lower mean MTR and MMF values were present in the older compared with the younger group in all studied lower leg muscles. T2-MM showed significantly lower values in the older group only for PTM and SM muscles. In contrast, T2-W showed significantly higher values in the older group. The age-related differences were more pronounced for MMF (-17 to -19%) and T2-W (+20 to 47%) measurements in all muscle groups compared with other investigated MR measures. ICCs were higher than 0.93, indicating excellent consistency between the ROI selection and MRI measurements of independent readers. As demonstrated by significant differences between younger and older groups, this research emphasizes the potential of UTE-MT MRI techniques in evaluating age-related skeletal muscle changes.

通过超短回波时间磁化转移建模检测老年女性和年轻女性小腿肌肉之间与年龄有关的显著差异。
磁化传递(MT)磁共振成像(MRI)可用于估算组织中水和大分子质子池的比例。MT建模与超短回波时间采集(UTE-MT建模)相结合,可改善对肌腱连接处和肌肉组织纤维化的评估,后者会随着年龄的增长而增加。本研究旨在确定UTE-MT建模技术对小腿骨骼肌与年龄相关的变化是否敏感。研究获得了机构审查委员会的批准,所有受试者都提供了书面知情同意书。在 3 T 磁共振成像扫描仪上使用 UTE 序列对 31 名年轻(28.1 ± 6.1 岁,BMI = 22.3 ± 3.5)和 20 名年长(74.7 ± 5.5 岁,BMI = 26.7 ± 5.9)的健康女性受试者的腿部进行成像。使用UTE-MT建模计算了胫骨前肌(ATM)、胫骨后肌(PTM)、比目鱼肌(SM)和外侧联合肌的MT比值(MTR)、大分子分数(MMF)、大分子T2(T2-MM)和水T2(T2-W)。采用 Wilcoxon 秩和检验比较组间结果。三名独立观察者分别选择感兴趣区(ROI)和处理 UTE-MRI 图像,并计算类内相关系数(ICC)以进行重现性研究。在所有研究的小腿肌肉中,老年组的 MTR 和 MMF 平均值均显著低于年轻组。只有 PTM 和 SM 肌肉的 T2-MM 值在老年组明显较低。相反,老年组的 T2-W 值明显较高。在所有肌肉群中,MMF(-17% 至 -19%)和 T2-W 测量值(+20% 至 47%)与年龄相关的差异比其他磁共振测量值更为明显。ICC 均高于 0.93,表明独立读者的 ROI 选择和 MRI 测量结果之间具有极佳的一致性。年轻组和老年组之间的显著差异表明,这项研究强调了UTE-MT MRI 技术在评估与年龄相关的骨骼肌变化方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信