A potential mechanism of tumor immune escape: Regulation and application of soluble natural killer group 2 member D ligands (Review).

IF 3.8 3区 医学 Q2 ONCOLOGY
Oncology reports Pub Date : 2024-10-01 Epub Date: 2024-08-19 DOI:10.3892/or.2024.8796
Shuhao Huang, Zihao Qin, Feiyang Wang, Yiping Kang, Biqiong Ren
{"title":"A potential mechanism of tumor immune escape: Regulation and application of soluble natural killer group 2 member D ligands (Review).","authors":"Shuhao Huang, Zihao Qin, Feiyang Wang, Yiping Kang, Biqiong Ren","doi":"10.3892/or.2024.8796","DOIUrl":null,"url":null,"abstract":"<p><p>The immune system is integral to the surveillance and eradication of tumor cells. Interactions between the natural killer group 2 member D (NKG2D) receptor and its ligands (NKG2DLs) are vital for activating NKG2D receptor‑positive immune cells, such as natural killer cells. This activation enables these cells to identify and destroy tumor cells presenting with NKG2DLs, which is an essential aspect of tumor immunity. However, tumor immune escape is facilitated by soluble NKG2DL (sNKG2DL) shed from the surface of tumor cells. The production of sNKG2DL is predominantly regulated by metalloproteinases [a disintegrin and metalloproteinases (ADAM) and matrix metalloproteinase (MMP) families] and exosomes. sNKG2DL not only diminish immune recognition on the tumor cell surface but also suppress the function of immune cells, such as NK cells, and reduce the expression of the NKG2D receptor. This process promotes immune evasion, progression, and metastasis of tumors. In this review, an in‑depth summary of the mechanisms and factors that influence sNKG2DL production and their contribution to immune suppression within the tumor microenvironment are provided. Furthermore, due to the significant link between sNKG2DLs and tumor progression and metastasis, they have great potential as novel biomarkers. Detectable via liquid biopsies, sNKG2DLs could assess tumor malignancy and prognosis, and act as pivotal targets for immunotherapy. This could lead to the discovery of new drugs or the enhancement of existing treatments. Thus, the application of sNKG2DLs in clinical oncology was explored, offering substantial theoretical support for the development of innovative immunotherapeutic strategies for sNKG2DLs.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 4","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358674/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncology reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/or.2024.8796","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The immune system is integral to the surveillance and eradication of tumor cells. Interactions between the natural killer group 2 member D (NKG2D) receptor and its ligands (NKG2DLs) are vital for activating NKG2D receptor‑positive immune cells, such as natural killer cells. This activation enables these cells to identify and destroy tumor cells presenting with NKG2DLs, which is an essential aspect of tumor immunity. However, tumor immune escape is facilitated by soluble NKG2DL (sNKG2DL) shed from the surface of tumor cells. The production of sNKG2DL is predominantly regulated by metalloproteinases [a disintegrin and metalloproteinases (ADAM) and matrix metalloproteinase (MMP) families] and exosomes. sNKG2DL not only diminish immune recognition on the tumor cell surface but also suppress the function of immune cells, such as NK cells, and reduce the expression of the NKG2D receptor. This process promotes immune evasion, progression, and metastasis of tumors. In this review, an in‑depth summary of the mechanisms and factors that influence sNKG2DL production and their contribution to immune suppression within the tumor microenvironment are provided. Furthermore, due to the significant link between sNKG2DLs and tumor progression and metastasis, they have great potential as novel biomarkers. Detectable via liquid biopsies, sNKG2DLs could assess tumor malignancy and prognosis, and act as pivotal targets for immunotherapy. This could lead to the discovery of new drugs or the enhancement of existing treatments. Thus, the application of sNKG2DLs in clinical oncology was explored, offering substantial theoretical support for the development of innovative immunotherapeutic strategies for sNKG2DLs.

肿瘤免疫逃逸的潜在机制:可溶性天然杀伤细胞 2 组 D 配体的调控和应用(综述)。
免疫系统是监视和消灭肿瘤细胞不可或缺的一部分。自然杀伤细胞 2 组 D (NKG2D) 受体与其配体(NKG2DLs)之间的相互作用对于激活 NKG2D 受体阳性的免疫细胞(如自然杀伤细胞)至关重要。这种激活使这些细胞能够识别并摧毁呈递 NKG2DLs 的肿瘤细胞,这是肿瘤免疫的一个重要方面。然而,肿瘤细胞表面脱落的可溶性 NKG2DL(sNKG2DL)会促进肿瘤免疫逃逸。sNKG2DL 的产生主要受金属蛋白酶(a disintegrin and metalloproteinases(ADAM)和基质金属蛋白酶(matrix metalloproteinase(MMP)家族)和外泌体的调控。sNKG2DL 不仅会降低肿瘤细胞表面的免疫识别能力,还会抑制 NK 细胞等免疫细胞的功能,并减少 NKG2D 受体的表达。这一过程促进了肿瘤的免疫逃避、进展和转移。本综述深入总结了影响 sNKG2DL 生成的机制和因素及其对肿瘤微环境中免疫抑制的贡献。此外,由于 sNKG2DLs 与肿瘤进展和转移之间的重要联系,它们作为新型生物标记物具有巨大的潜力。sNKG2DLs 可通过液体活检进行检测,可评估肿瘤的恶性程度和预后,并可作为免疫疗法的关键靶点。这将有助于发现新药或改进现有疗法。因此,我们探讨了 sNKG2DLs 在临床肿瘤学中的应用,为针对 sNKG2DLs 开发创新性免疫治疗策略提供了大量理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oncology reports
Oncology reports 医学-肿瘤学
CiteScore
8.50
自引率
2.40%
发文量
187
审稿时长
3 months
期刊介绍: Oncology Reports is a monthly, peer-reviewed journal devoted to the publication of high quality original studies and reviews concerning a broad and comprehensive view of fundamental and applied research in oncology, focusing on carcinogenesis, metastasis and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信