Jiake Tang, Ting Tang, Qingwen Yu, Xuhan Tong, Chun Liu, Chen Chen, Siqi Hu, Shenghui Zhang, Yao You, Chunyi Wang, Jie Li, Wen Wen, Juan Chen, Xingwei Zhang, Mingwei Wang, Fan Tong
{"title":"Association Between Remnant Cholesterol and Nonalcoholic Fatty Liver Disease: A Systemic Review and Meta-Analysis.","authors":"Jiake Tang, Ting Tang, Qingwen Yu, Xuhan Tong, Chun Liu, Chen Chen, Siqi Hu, Shenghui Zhang, Yao You, Chunyi Wang, Jie Li, Wen Wen, Juan Chen, Xingwei Zhang, Mingwei Wang, Fan Tong","doi":"10.1089/met.2024.0042","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid disorders are related to the risk of nonalcoholic fatty liver disease (NAFLD). Remnant cholesterol (RC), a nonclassical and once-neglected risk factor for NAFLD, has recently received new attention. In this study, we assessed the relationship between the RC levels and NAFLD risk. We searched across PubMed, Web of Science, Embase, Cochrane Library, and China National Knowledge Infrastructure, with no restrictions on publication languages. Retrospective cohort studies and cross-sectional studies were enrolled from the inception of the databases until August 6, 2023. A random-effect model was applied to construct the mean difference, and a 95% confidence interval was applied to assess the relationship between the RC levels and NAFLD risk. We used two methods to estimate RC levels: Calculated-1 subtracts low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol from total cholesterol; Calculated-2 uses the Friedewald formula for LDL-C when triglycerides are <4.0 mmol/L, otherwise directly measured. A total of 265 published studies were selected through preliminary retrieval. Of these, six studies met the inclusion requirements and were enrolled in the meta-analysis. The RC level in the NAFLD group was significantly higher than that in the non-NAFLD group (mean difference: 0.18, 95% confidence interval: 0.10-0.26, <i>P</i> < 0.00001). We conducted subgroup analyses of computational methods and geographic regions. Notably, in the subgroup analysis of Calculation Method 2, the NAFLD group had significantly higher RC levels than the non-NAFLD group. On the other hand, in Calculation Method 1, the difference between the two groups was insignificant. In both the Asian and non-Asian populations, the RC levels were significantly higher in the NAFLD group than in the non-NAFLD group. The association of RC with an increased NAFLD risk was not dependent on the triglyceride. This meta-analysis suggests that elevated RC levels are associated with an increased risk of NAFLD. In addition to the conventional risk factors for fatty liver, clinicians should be concerned about the RC levels in the clinic.</p>","PeriodicalId":18405,"journal":{"name":"Metabolic syndrome and related disorders","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic syndrome and related disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/met.2024.0042","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid disorders are related to the risk of nonalcoholic fatty liver disease (NAFLD). Remnant cholesterol (RC), a nonclassical and once-neglected risk factor for NAFLD, has recently received new attention. In this study, we assessed the relationship between the RC levels and NAFLD risk. We searched across PubMed, Web of Science, Embase, Cochrane Library, and China National Knowledge Infrastructure, with no restrictions on publication languages. Retrospective cohort studies and cross-sectional studies were enrolled from the inception of the databases until August 6, 2023. A random-effect model was applied to construct the mean difference, and a 95% confidence interval was applied to assess the relationship between the RC levels and NAFLD risk. We used two methods to estimate RC levels: Calculated-1 subtracts low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol from total cholesterol; Calculated-2 uses the Friedewald formula for LDL-C when triglycerides are <4.0 mmol/L, otherwise directly measured. A total of 265 published studies were selected through preliminary retrieval. Of these, six studies met the inclusion requirements and were enrolled in the meta-analysis. The RC level in the NAFLD group was significantly higher than that in the non-NAFLD group (mean difference: 0.18, 95% confidence interval: 0.10-0.26, P < 0.00001). We conducted subgroup analyses of computational methods and geographic regions. Notably, in the subgroup analysis of Calculation Method 2, the NAFLD group had significantly higher RC levels than the non-NAFLD group. On the other hand, in Calculation Method 1, the difference between the two groups was insignificant. In both the Asian and non-Asian populations, the RC levels were significantly higher in the NAFLD group than in the non-NAFLD group. The association of RC with an increased NAFLD risk was not dependent on the triglyceride. This meta-analysis suggests that elevated RC levels are associated with an increased risk of NAFLD. In addition to the conventional risk factors for fatty liver, clinicians should be concerned about the RC levels in the clinic.
期刊介绍:
Metabolic Syndrome and Related Disorders is the only peer-reviewed journal focusing solely on the pathophysiology, recognition, and treatment of this major health condition. The Journal meets the imperative for comprehensive research, data, and commentary on metabolic disorder as a suspected precursor to a wide range of diseases, including type 2 diabetes, cardiovascular disease, stroke, cancer, polycystic ovary syndrome, gout, and asthma.
Metabolic Syndrome and Related Disorders coverage includes:
-Insulin resistance-
Central obesity-
Glucose intolerance-
Dyslipidemia with elevated triglycerides-
Low HDL-cholesterol-
Microalbuminuria-
Predominance of small dense LDL-cholesterol particles-
Hypertension-
Endothelial dysfunction-
Oxidative stress-
Inflammation-
Related disorders of polycystic ovarian syndrome, fatty liver disease (NASH), and gout