María Yesenia Díaz-Cárdenas, Victoria Bustos-Terrones, Samantha Giselle López-Aguilar, Angélica Sánchez-Ponce, Jorge Uruchurtu-Chavarín, Gabriela Eleonora Moeller-Chávez
{"title":"Theoretical and experimental studies of cephalexin adsorption on aluminium as a new alternative of removal from wastewater.","authors":"María Yesenia Díaz-Cárdenas, Victoria Bustos-Terrones, Samantha Giselle López-Aguilar, Angélica Sánchez-Ponce, Jorge Uruchurtu-Chavarín, Gabriela Eleonora Moeller-Chávez","doi":"10.1080/09593330.2024.2390150","DOIUrl":null,"url":null,"abstract":"<p><p>Cephalexin (CPX) is an antibiotic widely used to treat many infections. CPX has become an emerging pollutant present in wastewater. On the other hand, it is well known that organic compounds can be adsorbed over metal surfaces when the metal is in active state such as when it is rusting. This work proposes an alternative for the elimination of CPX from wastewater, applying electrochemical principles using a conventional and cheap substrate, aluminium. The first part consisted of obtaining the active states of aluminium electrodes carrying out voltametric curves at different pH (4, 7 and 9) to find the particular condition of interaction between CPX and metal surface. The potential was used in the potentiostatic tests to set the activation potential of metal at different times. After the treatment, electrolyte solutions were analysed using UV-vis spectra, and the aluminium surfaces were studied by optical micrographs and X-ray diffraction. In addition, aluminium-CPX interactions were corroborated by quantum-chemical calculations and adsorption isotherms. All results indicate that it was possible for the CPX removal at basic pH conditions, where the molecule adsorption on the aluminium substrate occurs due to a strong electrostatic interaction.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1412-1422"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2390150","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cephalexin (CPX) is an antibiotic widely used to treat many infections. CPX has become an emerging pollutant present in wastewater. On the other hand, it is well known that organic compounds can be adsorbed over metal surfaces when the metal is in active state such as when it is rusting. This work proposes an alternative for the elimination of CPX from wastewater, applying electrochemical principles using a conventional and cheap substrate, aluminium. The first part consisted of obtaining the active states of aluminium electrodes carrying out voltametric curves at different pH (4, 7 and 9) to find the particular condition of interaction between CPX and metal surface. The potential was used in the potentiostatic tests to set the activation potential of metal at different times. After the treatment, electrolyte solutions were analysed using UV-vis spectra, and the aluminium surfaces were studied by optical micrographs and X-ray diffraction. In addition, aluminium-CPX interactions were corroborated by quantum-chemical calculations and adsorption isotherms. All results indicate that it was possible for the CPX removal at basic pH conditions, where the molecule adsorption on the aluminium substrate occurs due to a strong electrostatic interaction.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current