{"title":"Internal cycling of Fe<sup>3+</sup>/Fe<sup>2+</sup> within Fe<sub>3</sub>O<sub>4</sub> on cathode promotes green degradation of reactive brilliant red X-3B on anode.","authors":"Zhanping Cao, Ye Meng, Sihan Shang, Yuxin Liu","doi":"10.1080/09593330.2024.2390152","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive brilliant red X-3B (RBRX-3B) wastewater is difficult to decolourise, not readily biodegradable, and large in quantity. Therefore, the efficient removal of RBRX-3B is crucial. In this paper, a green and efficient electrochemical-electro-Fenton system with Fe<sub>3</sub>O<sub>4</sub>-modified carbon felt bag cathode (ECEF-Fe<sub>3</sub>O<sub>4</sub>) was set up to degrade RBRX-3B wastewater. Experiments confirmed that the removal of RBRX-3B by ·OH or H<sub>2</sub>O<sub>2</sub> is quite low, and RBRX-3B can be completely oxidised and degraded directly on the anode. Long-cycle experimental data further shows that the degradation efficiency of RBRX-3B on the anode is 100% at 70 min at the reaction rate constants (k) of 0.071 min<sup>-1</sup> in ECEF-Fe<sub>3</sub>O<sub>4</sub> while that of RBRX-3B on the cathode is only 16.8 ± 0.9%. The generation of ·OH is mainly catalysed through the internal cycling of Fe<sup>3+</sup>/Fe<sup>2+</sup> within Fe<sub>3</sub>O<sub>4</sub> on the cathode, and the generation and annihilation of ·OH on the cathode enhance the oxidation efficiency of the anode, achieving the green and effective removal of RBRX-3B by the anode in ECEF-Fe<sub>3</sub>O<sub>4</sub>.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1423-1431"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2390152","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive brilliant red X-3B (RBRX-3B) wastewater is difficult to decolourise, not readily biodegradable, and large in quantity. Therefore, the efficient removal of RBRX-3B is crucial. In this paper, a green and efficient electrochemical-electro-Fenton system with Fe3O4-modified carbon felt bag cathode (ECEF-Fe3O4) was set up to degrade RBRX-3B wastewater. Experiments confirmed that the removal of RBRX-3B by ·OH or H2O2 is quite low, and RBRX-3B can be completely oxidised and degraded directly on the anode. Long-cycle experimental data further shows that the degradation efficiency of RBRX-3B on the anode is 100% at 70 min at the reaction rate constants (k) of 0.071 min-1 in ECEF-Fe3O4 while that of RBRX-3B on the cathode is only 16.8 ± 0.9%. The generation of ·OH is mainly catalysed through the internal cycling of Fe3+/Fe2+ within Fe3O4 on the cathode, and the generation and annihilation of ·OH on the cathode enhance the oxidation efficiency of the anode, achieving the green and effective removal of RBRX-3B by the anode in ECEF-Fe3O4.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current