Bingyao Tan , Jacqueline Chua , Damon Wong , Xinyu Liu , Munirah Ismail , Leopold Schmetterer
{"title":"Techniques for imaging the choroid and choroidal blood flow in vivo","authors":"Bingyao Tan , Jacqueline Chua , Damon Wong , Xinyu Liu , Munirah Ismail , Leopold Schmetterer","doi":"10.1016/j.exer.2024.110045","DOIUrl":null,"url":null,"abstract":"<div><p>The choroid, which is a highly vascularized layer between the retina and sclera, is essential for supplying oxygen and nutrients to the outer retina. Choroidal vascular dysfunction has been implicated in numerous ocular diseases, including age-related macular degeneration, central serous chorioretinopathy, polypoidal choroidal vasculopathy, and myopia. Traditionally, the in vivo assessment of choroidal blood flow relies on techniques such as laser Doppler flowmetry, laser speckle flowgraphy, pneumotonometry, laser interferometry, and ultrasonic color Doppler imaging. While the aforementioned methods have provided valuable insights into choroidal blood flow regulation, their clinical applications have been limited. Recent advancements in optical coherence tomography and optical coherence tomography angiography have expanded our understanding of the choroid, allowing detailed visualization of the larger choroidal vessels and choriocapillaris, respectively. This review provides an overview of the available techniques that can investigate the choroid and its blood flow in vivo. Future research should combine these techniques to comprehensively image the entire choroidal microcirculation and develop robust methods to quantify choroidal blood flow. The potential findings will provide a better picture of choroidal hemodynamics and its effect on ocular health and disease.</p></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"247 ","pages":"Article 110045"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014483524002665","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The choroid, which is a highly vascularized layer between the retina and sclera, is essential for supplying oxygen and nutrients to the outer retina. Choroidal vascular dysfunction has been implicated in numerous ocular diseases, including age-related macular degeneration, central serous chorioretinopathy, polypoidal choroidal vasculopathy, and myopia. Traditionally, the in vivo assessment of choroidal blood flow relies on techniques such as laser Doppler flowmetry, laser speckle flowgraphy, pneumotonometry, laser interferometry, and ultrasonic color Doppler imaging. While the aforementioned methods have provided valuable insights into choroidal blood flow regulation, their clinical applications have been limited. Recent advancements in optical coherence tomography and optical coherence tomography angiography have expanded our understanding of the choroid, allowing detailed visualization of the larger choroidal vessels and choriocapillaris, respectively. This review provides an overview of the available techniques that can investigate the choroid and its blood flow in vivo. Future research should combine these techniques to comprehensively image the entire choroidal microcirculation and develop robust methods to quantify choroidal blood flow. The potential findings will provide a better picture of choroidal hemodynamics and its effect on ocular health and disease.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.