{"title":"DNA damage in workers exposed to mineral oils.","authors":"Rezvan Zendehdel, Elham Asgari-Gandomani, Athena Rafieepour, Zahra Panjali, Zahra Moradpour","doi":"10.1080/01480545.2024.2387803","DOIUrl":null,"url":null,"abstract":"<p><p>Mineral oils, untreated or mildly treated, have been classified in group 1 as a potential source of cancer by the International Agency for Research on Cancer (IARC). Although numerous studies have implicated metalworking fluids (MWFs) as human carcinogens, toxicology data regarding the mechanism of carcinogenicity are limited. This study is intended to examine the systemic effects of machining workers' exposure to MWFs. The potential toxicity of mineral oils was investigated in 65 lathe workers compared to controls (66 men). The occupational exposure was measured by the National Institute for Occupational Safety and Health (NIOSH) 5026. The DNA damage has been examined by the comet assay method. According to the field assessments, the time-weighted average (TWA) exposure to mineral oil mist was 7.67 ± 3.21 mg/m<sup>3</sup>. A comet assay of peripheral blood cells showed that tail length (TL) and olive moment (OM) were significantly higher in the exposed group (<i>p</i> < 0.05). A multiple logistic regression analysis revealed that, within subjects with over 10 years of exposure, the odds ratio of worker with high TL, percent of DNA in tail, OM, and tail moment (TM) were 1.68, 1.41, 1.71, and 2.71, respectively. DNA strand break in exposed workers was associated with higher exposure time in years. Mineral oil toxicity could be altered in the presence of by-products and impurities. For a better understanding of genotoxicity, further studies are required.</p>","PeriodicalId":11333,"journal":{"name":"Drug and Chemical Toxicology","volume":" ","pages":"540-546"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug and Chemical Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01480545.2024.2387803","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mineral oils, untreated or mildly treated, have been classified in group 1 as a potential source of cancer by the International Agency for Research on Cancer (IARC). Although numerous studies have implicated metalworking fluids (MWFs) as human carcinogens, toxicology data regarding the mechanism of carcinogenicity are limited. This study is intended to examine the systemic effects of machining workers' exposure to MWFs. The potential toxicity of mineral oils was investigated in 65 lathe workers compared to controls (66 men). The occupational exposure was measured by the National Institute for Occupational Safety and Health (NIOSH) 5026. The DNA damage has been examined by the comet assay method. According to the field assessments, the time-weighted average (TWA) exposure to mineral oil mist was 7.67 ± 3.21 mg/m3. A comet assay of peripheral blood cells showed that tail length (TL) and olive moment (OM) were significantly higher in the exposed group (p < 0.05). A multiple logistic regression analysis revealed that, within subjects with over 10 years of exposure, the odds ratio of worker with high TL, percent of DNA in tail, OM, and tail moment (TM) were 1.68, 1.41, 1.71, and 2.71, respectively. DNA strand break in exposed workers was associated with higher exposure time in years. Mineral oil toxicity could be altered in the presence of by-products and impurities. For a better understanding of genotoxicity, further studies are required.
期刊介绍:
Drug and Chemical Toxicology publishes full-length research papers, review articles and short communications that encompass a broad spectrum of toxicological data surrounding risk assessment and harmful exposure. Manuscripts are considered according to their relevance to the journal.
Topics include both descriptive and mechanics research that illustrates the risk assessment implications of exposure to toxic agents. Examples of suitable topics include toxicological studies, which are structural examinations on the effects of dose, metabolism, and statistical or mechanism-based approaches to risk assessment. New findings and methods, along with safety evaluations, are also acceptable. Special issues may be reserved to publish symposium summaries, reviews in toxicology, and overviews of the practical interpretation and application of toxicological data.