Qiongyao Zeng , Ye Yang , Yujun Liu , Zhengwei Li , Pingyuan Li , Zejun Zhou
{"title":"Fish IL-26 collaborates with IL-10R2 and IL-20R1 to enhance gut mucosal barrier during the antibacterial innate immunity","authors":"Qiongyao Zeng , Ye Yang , Yujun Liu , Zhengwei Li , Pingyuan Li , Zejun Zhou","doi":"10.1016/j.dci.2024.105249","DOIUrl":null,"url":null,"abstract":"<div><p>IL-26 is a cytokine that is crucial for the maintenance and function of the gut mucosal barrier. IL-26 signaling pathway relies on a heterodimeric receptor complex, which is composed of two distinct subunits, IL-10R2 and IL-20R1. However, there are no reports on the antibacterial immunity of IL-26 and its receptors in fish. For this purpose, in this study we identified IL-26 and its receptors IL-10R2 and IL-20R1 in <em>Carassius cuvieri</em> × <em>Carassius auratus</em> red var. (named WR-IL-26, WR-IL10R2 and WR-IL20R1, respectively). Phylogenetic analysis confirmed the conservation of these genes, with shared structural motifs similar to those found in higher vertebrates. Upon exposure to <em>Aeromonas hydrophila</em>, a common fish pathogen, there was a significant upregulation of <em>WR-IL-26</em>, <em>WR-IL10R2</em> and <em>WR-IL20R1</em> in the gut, indicating a potential role in the immune response to infection. A co-immunoprecipitation assay revealed that WR-IL-26 formed complexes with WR-IL10R2 and WR-IL20R1. <em>In vivo</em> experiments demonstrated that administration of WR-IL-26 activated the JAK1-STAT3 signaling pathway and protected the gut mucosa barrier from <em>A. hydrophila</em> infection. Conversely, silencing WR-IL10R2 and WR-IL20R1 via RNA interference significantly attenuated the activation of WR-IL-26-mediated JAK1-STAT3 pathway. These results provided new insights into the role of IL-26 and its receptors in the gut mucosa barrier and could offer novel therapeutic strategies for managing bacterial infections in aquaculture.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0145305X24001216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
IL-26 is a cytokine that is crucial for the maintenance and function of the gut mucosal barrier. IL-26 signaling pathway relies on a heterodimeric receptor complex, which is composed of two distinct subunits, IL-10R2 and IL-20R1. However, there are no reports on the antibacterial immunity of IL-26 and its receptors in fish. For this purpose, in this study we identified IL-26 and its receptors IL-10R2 and IL-20R1 in Carassius cuvieri × Carassius auratus red var. (named WR-IL-26, WR-IL10R2 and WR-IL20R1, respectively). Phylogenetic analysis confirmed the conservation of these genes, with shared structural motifs similar to those found in higher vertebrates. Upon exposure to Aeromonas hydrophila, a common fish pathogen, there was a significant upregulation of WR-IL-26, WR-IL10R2 and WR-IL20R1 in the gut, indicating a potential role in the immune response to infection. A co-immunoprecipitation assay revealed that WR-IL-26 formed complexes with WR-IL10R2 and WR-IL20R1. In vivo experiments demonstrated that administration of WR-IL-26 activated the JAK1-STAT3 signaling pathway and protected the gut mucosa barrier from A. hydrophila infection. Conversely, silencing WR-IL10R2 and WR-IL20R1 via RNA interference significantly attenuated the activation of WR-IL-26-mediated JAK1-STAT3 pathway. These results provided new insights into the role of IL-26 and its receptors in the gut mucosa barrier and could offer novel therapeutic strategies for managing bacterial infections in aquaculture.