Application and Cytotoxicity Evaluation of Fe-MIL-101 Nanozyme in Milk.

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ruicong Tang, Keyu Xing, Jia Tu, Xufeng Wang, Liguang Xu, Wei Chen, Yunhui Cheng, Zhou Xu
{"title":"Application and Cytotoxicity Evaluation of Fe-MIL-101 Nanozyme in Milk.","authors":"Ruicong Tang, Keyu Xing, Jia Tu, Xufeng Wang, Liguang Xu, Wei Chen, Yunhui Cheng, Zhou Xu","doi":"10.1007/s12010-024-05015-0","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we used Fe-MIL-101 nanozyme to convert lactose into lactitol, and it was proved that Fe-MIL-101 nanozyme has lactase-like activity. Due to the potential health effects of nanomaterials, we evaluated the cytotoxicity of Fe-MIL-101 nanozyme. To reduce the potential toxicity of the nanozyme, we applied centrifugation and membrane filtration. When the membrane aperture size was 100 nm, the residual content of Fe-MIL-101 nanozyme was 14.09 μg/mL. The residual content of Fe-MIL-101 nanozyme was reduced by optimizing time, temperature, and Fe-MIL-101 nanozyme-to-substrate ratio. It was showed that the concentration of Fe was 38.47 mg/kg and the concentration of H<sub>2</sub>BDC was 0 mg/kg under optimized conditions (110℃, 2 h of reaction and the ratio of Fe-MIL-101 nanozyme to substrate is 1:20). The result met the national standard of China. Experiments measuring cytotoxicity, oxidative stress, and cell membrane damage revealed that less than 20 μg/mL Fe-MIL-101 nanozyme had no significant cytotoxicity. Our study findings showed that Fe-MIL-101 nanozyme reduced lactose content in milk.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05015-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we used Fe-MIL-101 nanozyme to convert lactose into lactitol, and it was proved that Fe-MIL-101 nanozyme has lactase-like activity. Due to the potential health effects of nanomaterials, we evaluated the cytotoxicity of Fe-MIL-101 nanozyme. To reduce the potential toxicity of the nanozyme, we applied centrifugation and membrane filtration. When the membrane aperture size was 100 nm, the residual content of Fe-MIL-101 nanozyme was 14.09 μg/mL. The residual content of Fe-MIL-101 nanozyme was reduced by optimizing time, temperature, and Fe-MIL-101 nanozyme-to-substrate ratio. It was showed that the concentration of Fe was 38.47 mg/kg and the concentration of H2BDC was 0 mg/kg under optimized conditions (110℃, 2 h of reaction and the ratio of Fe-MIL-101 nanozyme to substrate is 1:20). The result met the national standard of China. Experiments measuring cytotoxicity, oxidative stress, and cell membrane damage revealed that less than 20 μg/mL Fe-MIL-101 nanozyme had no significant cytotoxicity. Our study findings showed that Fe-MIL-101 nanozyme reduced lactose content in milk.

Abstract Image

Fe-MIL-101 纳米酶在牛奶中的应用和细胞毒性评估
在这项研究中,我们利用 Fe-MIL-101 纳米酶将乳糖转化为乳糖醇,结果证明 Fe-MIL-101 纳米酶具有类似乳糖酶的活性。鉴于纳米材料对健康的潜在影响,我们对 Fe-MIL-101 纳米酶的细胞毒性进行了评估。为了降低纳米酶的潜在毒性,我们采用了离心和膜过滤的方法。当膜孔径为 100 nm 时,Fe-MIL-101 纳米酶的残留量为 14.09 μg/mL。通过优化时间、温度和 Fe-MIL-101 纳米酶与底物的比例,降低了 Fe-MIL-101 纳米酶的残留量。结果表明,在优化条件下(110℃,反应 2 h,Fe-MIL-101 纳米酶与底物的比例为 1:20),Fe 的浓度为 38.47 mg/kg,H2BDC 的浓度为 0 mg/kg。结果符合中国国家标准。细胞毒性、氧化应激和细胞膜损伤实验表明,小于 20 μg/mL 的 Fe-MIL-101 纳米酶没有明显的细胞毒性。我们的研究结果表明,Fe-MIL-101 纳米酶可降低牛奶中的乳糖含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信