Marc Brunet Cabré, Christian Schröder, Filippo Pota, Maida A Costa de Oliveira, Hugo Nolan, Lua Henderson, Laurence Brazel, Dahnan Spurling, Valeria Nicolosi, Pietro Martinuz, Mariangela Longhi, Faidra Amargianou, Peer Bärmann, Tristan Petit, Kim McKelvey, Paula E Colavita
{"title":"Carbon Thin-Film Electrodes as High-Performing Substrates for Correlative Single Entity Electrochemistry.","authors":"Marc Brunet Cabré, Christian Schröder, Filippo Pota, Maida A Costa de Oliveira, Hugo Nolan, Lua Henderson, Laurence Brazel, Dahnan Spurling, Valeria Nicolosi, Pietro Martinuz, Mariangela Longhi, Faidra Amargianou, Peer Bärmann, Tristan Petit, Kim McKelvey, Paula E Colavita","doi":"10.1002/smtd.202400639","DOIUrl":null,"url":null,"abstract":"<p><p>Correlative methods to characterize single entities by electrochemistry and microscopy/spectroscopy are increasingly needed to elucidate structure-function relationships of nanomaterials. However, the technical constraints often differ depending on the characterization techniques to be applied in combination. One of the cornerstones of correlative single-entity electrochemistry (SEE) is the substrate, which needs to achieve a high conductivity, low roughness, and electrochemical inertness. This work shows that graphitized sputtered carbon thin films constitute excellent electrodes for SEE while enabling characterization with scanning probe, optical, electron, and X-ray microscopies. Three different correlative SEE experiments using nanoparticles, nanocubes, and 2D Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene materials are reported to illustrate the potential of using carbon thin film substrates for SEE characterization. The advantages and unique capabilities of SEE correlative strategies are further demonstrated by showing that electrochemically oxidized Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene display changes in chemical bonding and electrolyte ion distribution.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400639"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740950/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400639","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Correlative methods to characterize single entities by electrochemistry and microscopy/spectroscopy are increasingly needed to elucidate structure-function relationships of nanomaterials. However, the technical constraints often differ depending on the characterization techniques to be applied in combination. One of the cornerstones of correlative single-entity electrochemistry (SEE) is the substrate, which needs to achieve a high conductivity, low roughness, and electrochemical inertness. This work shows that graphitized sputtered carbon thin films constitute excellent electrodes for SEE while enabling characterization with scanning probe, optical, electron, and X-ray microscopies. Three different correlative SEE experiments using nanoparticles, nanocubes, and 2D Ti3C2Tx MXene materials are reported to illustrate the potential of using carbon thin film substrates for SEE characterization. The advantages and unique capabilities of SEE correlative strategies are further demonstrated by showing that electrochemically oxidized Ti3C2Tx MXene display changes in chemical bonding and electrolyte ion distribution.
为了阐明纳米材料的结构-功能关系,越来越需要通过电化学和显微镜/光谱学来表征单个实体的相关方法。然而,技术上的限制往往因组合应用的表征技术而异。相关单实体电化学(SEE)的基石之一是基底,它需要实现高导电性、低粗糙度和电化学惰性。这项研究表明,石墨化溅射碳薄膜是 SEE 的绝佳电极,同时还能利用扫描探针、光学、电子和 X 射线显微镜进行表征。报告使用纳米颗粒、纳米立方体和二维 Ti3C2Tx MXene 材料进行了三种不同的相关 SEE 实验,以说明使用碳薄膜基底进行 SEE 表征的潜力。通过展示电化学氧化 Ti3C2Tx MXene 在化学键和电解质离子分布方面的变化,进一步证明了 SEE 关联策略的优势和独特能力。
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.