On locally identifying coloring of Cartesian product and tensor product of graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Sriram Bhyravarapu , Swati Kumari , I. Vinod Reddy
{"title":"On locally identifying coloring of Cartesian product and tensor product of graphs","authors":"Sriram Bhyravarapu ,&nbsp;Swati Kumari ,&nbsp;I. Vinod Reddy","doi":"10.1016/j.dam.2024.07.046","DOIUrl":null,"url":null,"abstract":"<div><p>For a positive integer <span><math><mi>k</mi></math></span>, a proper <span><math><mi>k</mi></math></span>-coloring of a graph <span><math><mi>G</mi></math></span> is a mapping <span><math><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≠</mo><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> for each edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> of <span><math><mi>G</mi></math></span>. The smallest integer <span><math><mi>k</mi></math></span> for which there is a proper <span><math><mi>k</mi></math></span>-coloring of <span><math><mi>G</mi></math></span> is called the chromatic number of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. A <em>locally identifying coloring</em> (for short, lid-coloring) of a graph <span><math><mi>G</mi></math></span> is a proper <span><math><mi>k</mi></math></span>-coloring of <span><math><mi>G</mi></math></span> such that every pair of adjacent vertices with distinct closed neighborhoods has distinct set of colors in their closed neighborhoods. The smallest integer <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has a lid-coloring with <span><math><mi>k</mi></math></span> colors is called <em>locally identifying chromatic number</em> (for short, <em>lid-chromatic number</em>) of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>l</mi><mi>i</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>.</p><p>This paper studies the lid-coloring of the Cartesian product and tensor product of two graphs. We prove that if <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span> are two connected graphs having at least two vertices, then (a) <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>l</mi><mi>i</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>□</mo><mi>H</mi><mo>)</mo></mrow><mo>≤</mo><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mi>χ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> and (b) <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>l</mi><mi>i</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>×</mo><mi>H</mi><mo>)</mo></mrow><mo>≤</mo><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mi>χ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>. Here <span><math><mrow><mi>G</mi><mo>□</mo><mi>H</mi></mrow></math></span> and <span><math><mrow><mi>G</mi><mo>×</mo><mi>H</mi></mrow></math></span> denote the Cartesian and tensor products of <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span>, respectively. We determine the lid-chromatic numbers of <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>□</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>□</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>×</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> denote a cycle and a path on <span><math><mi>m</mi></math></span> and <span><math><mi>n</mi></math></span> vertices, respectively.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"358 ","pages":"Pages 429-447"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003469","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For a positive integer k, a proper k-coloring of a graph G is a mapping f:V(G){1,2,,k} such that f(u)f(v) for each edge uv of G. The smallest integer k for which there is a proper k-coloring of G is called the chromatic number of G, denoted by χ(G). A locally identifying coloring (for short, lid-coloring) of a graph G is a proper k-coloring of G such that every pair of adjacent vertices with distinct closed neighborhoods has distinct set of colors in their closed neighborhoods. The smallest integer k such that G has a lid-coloring with k colors is called locally identifying chromatic number (for short, lid-chromatic number) of G, denoted by χlid(G).

This paper studies the lid-coloring of the Cartesian product and tensor product of two graphs. We prove that if G and H are two connected graphs having at least two vertices, then (a) χlid(GH)χ(G)χ(H)1 and (b) χlid(G×H)χ(G)χ(H). Here GH and G×H denote the Cartesian and tensor products of G and H, respectively. We determine the lid-chromatic numbers of CmPn, CmCn, Pm×Pn, Cm×Pn and Cm×Cn, where Cm and Pn denote a cycle and a path on m and n vertices, respectively.

论图的笛卡尔积和张量积的局部标识着色
对于正整数 k,图 G 的适当 k 着色是一个映射 f:V(G)→{1,2,...,k},使得对于 G 的每条边 uv,f(u)≠f(v)。G 存在适当 k 着色的最小整数 k 称为 G 的色度数,用 χ(G) 表示。图 G 的局部标识着色(简称为盖子着色)是 G 的适当 k 着色,使得每一对具有不同封闭邻域的相邻顶点在其封闭邻域中都有一组不同的颜色。使 G 具有 k 种颜色的顶点着色的最小整数 k 称为 G 的局部标识色度数(简称顶点着色数),用 χlid(G)表示。我们证明,如果 G 和 H 是至少有两个顶点的两个连通图,那么 (a) χlid(G□H)≤χ(G)χ(H)-1;(b) χlid(G×H)≤χ(G)χ(H)。这里,G□H 和 G×H 分别表示 G 和 H 的笛卡尔积和张量积。我们确定了 Cm□Pn、Cm□Cn、Pm×Pn、Cm×Pn 和 Cm×Cn 的立德数,其中 Cm 和 Pn 分别表示 m 个顶点上的循环和 n 个顶点上的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信