Ilya G. Stepanov , Vladimir L. Bychkov , Maxim G. Golubkov
{"title":"Formation of ions under the action of cosmic rays in humid air","authors":"Ilya G. Stepanov , Vladimir L. Bychkov , Maxim G. Golubkov","doi":"10.1016/j.jastp.2024.106332","DOIUrl":null,"url":null,"abstract":"<div><p>The processes of ion formation in humid tropospheric air under the action of cosmic rays are considered. In this case, positive and negative cluster ions appear. For this analysis, a kinetic model was developed that includes 55 components and 161 reactions. The calculation was carried out using the KINET software package. It is shown that the ionization of air by cosmic rays at altitudes of 5–35 km leads to the formation of plasma consisting mainly of <span><math><mrow><mi>N</mi><msubsup><mi>H</mi><mn>4</mn><mo>+</mo></msubsup><mo>⋅</mo><mi>N</mi><msub><mi>H</mi><mn>3</mn></msub><mo>⋅</mo><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow></math></span>, <span><math><mrow><msup><mi>H</mi><mo>+</mo></msup><mo>⋅</mo><msub><mrow><mo>(</mo><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow><mo>)</mo></mrow><mn>4</mn></msub></mrow></math></span> and <span><math><mrow><msubsup><mi>O</mi><mn>2</mn><mo>−</mo></msubsup><mo>⋅</mo><msub><mrow><mo>(</mo><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow><mo>)</mo></mrow><mn>2</mn></msub></mrow></math></span> ions. The maximum concentrations of ions under conditions of minimum magnetic rigidity are observed at altitudes from 10 to 18 km. These results differ sharply from the calculation results obtained for the dry air model.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"262 ","pages":"Article 106332"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001603","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The processes of ion formation in humid tropospheric air under the action of cosmic rays are considered. In this case, positive and negative cluster ions appear. For this analysis, a kinetic model was developed that includes 55 components and 161 reactions. The calculation was carried out using the KINET software package. It is shown that the ionization of air by cosmic rays at altitudes of 5–35 km leads to the formation of plasma consisting mainly of , and ions. The maximum concentrations of ions under conditions of minimum magnetic rigidity are observed at altitudes from 10 to 18 km. These results differ sharply from the calculation results obtained for the dry air model.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.