Partial regularity for manifold constrained quasilinear elliptic systems

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Esther Cabezas-Rivas , Salvador Moll , Vicent Pallardó-Julià
{"title":"Partial regularity for manifold constrained quasilinear elliptic systems","authors":"Esther Cabezas-Rivas ,&nbsp;Salvador Moll ,&nbsp;Vicent Pallardó-Julià","doi":"10.1016/j.na.2024.113643","DOIUrl":null,"url":null,"abstract":"<div><p>We consider manifold constrained weak solutions of quasilinear uniformly elliptic systems of divergence type with a source term that grows at most quadratically with respect to the gradient of the solution. As we impose that the solution lies on a Riemannian manifold, the classical smallness condition for regularity can be relaxed to an inequality relating strict convexity of the squared distance and growth of the leading order term in the tangent component of the source. As a key tool for the proof of a partial regularity result, we derive a fully intrinsic Caccioppoli inequality which may be of independent interest. Finally we show how the systems under consideration have a variational nature and arise in the context of <span><math><mi>F</mi></math></span>- or <span><math><mi>V</mi></math></span>-harmonic maps.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001627/pdfft?md5=474491586a35eaf7075af1bd65557db2&pid=1-s2.0-S0362546X24001627-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001627","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider manifold constrained weak solutions of quasilinear uniformly elliptic systems of divergence type with a source term that grows at most quadratically with respect to the gradient of the solution. As we impose that the solution lies on a Riemannian manifold, the classical smallness condition for regularity can be relaxed to an inequality relating strict convexity of the squared distance and growth of the leading order term in the tangent component of the source. As a key tool for the proof of a partial regularity result, we derive a fully intrinsic Caccioppoli inequality which may be of independent interest. Finally we show how the systems under consideration have a variational nature and arise in the context of F- or V-harmonic maps.

流形约束准线性椭圆系统的部分正则性
我们考虑了发散型准线性均匀椭圆系统的流形约束弱解,该系统的源项最多随解的梯度二次增长。由于我们强制要求解位于黎曼流形上,经典的正则性小条件可以放宽为与平方距离的严格凸性和源切线分量中前导阶项的增长相关的不等式。作为证明部分正则性结果的一个关键工具,我们推导出了一个完全内在的 Caccioppoli 不等式,它可能会引起独立的兴趣。最后,我们展示了所考虑的系统如何具有变分性质,以及如何在 F- 或 V- 谐波映射的背景下出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信