{"title":"Optimizing parameters of YOLO model through uniform experimental design for gripping tasks performed by an internet of things–based robotic arm","authors":"Jyun-Yu Jhang , Cheng-Jian Lin","doi":"10.1016/j.iot.2024.101332","DOIUrl":null,"url":null,"abstract":"<div><p>The booming development of automation in industry has seen robotic arms replace much of manual labor for tasks such as casting, processing, packaging, and gripping on production lines. The Internet of Things (IoT) framework enables machines to transmit data over networks, and combining it with artificial intelligence can create smarter systems with higher operational efficiency and quality. However, artificial intelligence models need to be optimized for different applications. This paper proposes a You Only Look Once–uniform experimental design (YOLO–UED) model for gripping tasks performed by an IoT-based robotic arm. The YOLO–UED model was designed by combining the YOLOv4 model with UED to optimize the model architecture, resulting in improved performance in various applications. Considering the huge expense of computational resources required for visual inspection with robotic arms, pairing each robotic arm with a high-performance computing device would substantially increase costs. This study proposed an IoT framework to transmit the images captured by the robotic arm to a computing server for object recognition. Utilizing the IoT framework helps reduce costs and provides scalability and flexibility in handling computational tasks. The proposed method was found to effectively enhance the model's mean average precision to 95 %. The YOLO–UED model exhibited 7–10 % improvement over the YOLOv4 model in terms of target recognition accuracy. Moreover, the proposed method attained a success rate of 90% in gripping tasks performed on objects placed at various angles.</p></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524002737","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The booming development of automation in industry has seen robotic arms replace much of manual labor for tasks such as casting, processing, packaging, and gripping on production lines. The Internet of Things (IoT) framework enables machines to transmit data over networks, and combining it with artificial intelligence can create smarter systems with higher operational efficiency and quality. However, artificial intelligence models need to be optimized for different applications. This paper proposes a You Only Look Once–uniform experimental design (YOLO–UED) model for gripping tasks performed by an IoT-based robotic arm. The YOLO–UED model was designed by combining the YOLOv4 model with UED to optimize the model architecture, resulting in improved performance in various applications. Considering the huge expense of computational resources required for visual inspection with robotic arms, pairing each robotic arm with a high-performance computing device would substantially increase costs. This study proposed an IoT framework to transmit the images captured by the robotic arm to a computing server for object recognition. Utilizing the IoT framework helps reduce costs and provides scalability and flexibility in handling computational tasks. The proposed method was found to effectively enhance the model's mean average precision to 95 %. The YOLO–UED model exhibited 7–10 % improvement over the YOLOv4 model in terms of target recognition accuracy. Moreover, the proposed method attained a success rate of 90% in gripping tasks performed on objects placed at various angles.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.