Caitlin A. Northcutt , Nikiforos Stamatiadis , Michael A. Fields , Reginald Souleyrette
{"title":"Estimating occupation-related crashes in light and medium size vehicles in Kentucky: A text mining and data linkage approach","authors":"Caitlin A. Northcutt , Nikiforos Stamatiadis , Michael A. Fields , Reginald Souleyrette","doi":"10.1016/j.aap.2024.107749","DOIUrl":null,"url":null,"abstract":"<div><p>Occupational motor vehicle (OMV) crashes are a leading cause of occupation-related injury and fatality in the United States. Statewide crash databases provide a good source for identifying crashes involving large commercial vehicles but are less optimal for identifying OMV crashes involving light or medium vehicles. This has led to an underestimation of OMV crash counts across states and an incomplete picture of the magnitude of the problem. The goal of this study was to develop and pilot a systematic process for identifying OMV crashes in light and medium vehicles using both state crash and health-related surveillance databases. A two-fold process was developed that included: 1) a machine learning approach for mining crash narratives and 2) a deterministic data linkage effort with crash state data and workers compensation (WC) claims records and emergency medical service (EMS) data, independently. Overall, the combined process identified 5,302 OMV crashes in light and medium vehicles within one year’s worth of crash data. Findings suggest the inclusion of multi-method approaches and multiple data sources can be implemented and used to improve OMV crash surveillance in the United States.</p></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"207 ","pages":"Article 107749"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000145752400294X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Occupational motor vehicle (OMV) crashes are a leading cause of occupation-related injury and fatality in the United States. Statewide crash databases provide a good source for identifying crashes involving large commercial vehicles but are less optimal for identifying OMV crashes involving light or medium vehicles. This has led to an underestimation of OMV crash counts across states and an incomplete picture of the magnitude of the problem. The goal of this study was to develop and pilot a systematic process for identifying OMV crashes in light and medium vehicles using both state crash and health-related surveillance databases. A two-fold process was developed that included: 1) a machine learning approach for mining crash narratives and 2) a deterministic data linkage effort with crash state data and workers compensation (WC) claims records and emergency medical service (EMS) data, independently. Overall, the combined process identified 5,302 OMV crashes in light and medium vehicles within one year’s worth of crash data. Findings suggest the inclusion of multi-method approaches and multiple data sources can be implemented and used to improve OMV crash surveillance in the United States.
期刊介绍:
Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.