{"title":"Versatile applications and mechanisms of genus Exiguobacterium in bioremediating heavy metals and organic pollutants: A review","authors":"Min Xiao, Zhong-er Long, Xueqin Fu, Long Zou","doi":"10.1016/j.ibiod.2024.105884","DOIUrl":null,"url":null,"abstract":"<div><p>Microbial remediation presents a promising and sustainable approach for combating environmental pollutants. The genus <em>Exiguobacterium</em> thrives in diverse habitats, including extreme environments, and effectively mitigates a wide array of pollutants through its versatile detoxification mechanisms. Notably, these bacteria are adept at removing heavy metals such as chromium, arsenic, cadmium, mercury, lead, nickel, and vanadium from both soil and water, thereby reducing their toxicity and bioavailability. Additionally, <em>Exiguobacterium</em> demonstrates significant capabilities in biodegrading various organic pollutants, including synthetic dyes, nitroaromatic compounds, petroleum hydrocarbons, and plastic polymers. Despite its ecological and environmental importance, article dedicated to this genus remains relatively sparse. This review aims to comprehensively summarize the application and mechanism of genus <em>Exiguobacterium</em> in remediating toxic heavy metals and organic pollutants. It begins with a brief description of the genus's taxonomic characteristics and ecological diversity, followed by a detailed examination of its detoxification and biodegradation mechanisms in response to pollutant stress. Furthermore, it proposes avenues for future research, including the discovery of novel functional strains, elucidation of detoxification and degradation pathways, and development of genetic editing tools to enhance practical applications in environmental remediation.</p></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"194 ","pages":"Article 105884"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524001550","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial remediation presents a promising and sustainable approach for combating environmental pollutants. The genus Exiguobacterium thrives in diverse habitats, including extreme environments, and effectively mitigates a wide array of pollutants through its versatile detoxification mechanisms. Notably, these bacteria are adept at removing heavy metals such as chromium, arsenic, cadmium, mercury, lead, nickel, and vanadium from both soil and water, thereby reducing their toxicity and bioavailability. Additionally, Exiguobacterium demonstrates significant capabilities in biodegrading various organic pollutants, including synthetic dyes, nitroaromatic compounds, petroleum hydrocarbons, and plastic polymers. Despite its ecological and environmental importance, article dedicated to this genus remains relatively sparse. This review aims to comprehensively summarize the application and mechanism of genus Exiguobacterium in remediating toxic heavy metals and organic pollutants. It begins with a brief description of the genus's taxonomic characteristics and ecological diversity, followed by a detailed examination of its detoxification and biodegradation mechanisms in response to pollutant stress. Furthermore, it proposes avenues for future research, including the discovery of novel functional strains, elucidation of detoxification and degradation pathways, and development of genetic editing tools to enhance practical applications in environmental remediation.
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.