An effective, novel and low-cost proton exchange membrane for microbial fuel cell-based bioelectricity production

Q1 Environmental Science
{"title":"An effective, novel and low-cost proton exchange membrane for microbial fuel cell-based bioelectricity production","authors":"","doi":"10.1016/j.biteb.2024.101929","DOIUrl":null,"url":null,"abstract":"<div><p>Microbial Fuel Cells (MFCs) are a substitute for fossil-fuel-based electricity generation. They are innovative bioelectrochemical systems that use microbial catalysts to convert organic waste directly into electrical energy. However, MFCs face several commercialization challenges, including expensive Proton Exchange Membranes (PEMs), making them unaffordable. The present research aims to develop cost-effective, environmentally friendly, high-performance PEM to make MFC technology more viable. The study analyzed using MFCs with different PEMs with native microflora and <em>Serratia marcescens</em> (AATB1) as biocatalysts to produce bioelectricity and treat septic tank wastewater (STWW). The experiment included a control group with sterile STWW. The study involves fabricating and characterizing the optimized Novel Cement Supported Conductive Salts PEM (NCSCS PEM) using SEM, TGA, and EIS techniques. The commercial Nafion 117 and salt bridge were used to compare NCSCS PEM in MFCs. The anode biofilm was investigated using CV, CLSM, and SEM. The MFCs with Nafion 117, NCSCS PEM, and Salt bridge produced power densities of 126.6 ± 1.06 mW/m<sup>2</sup>, 204.04 ± 0.87 mW/m<sup>2</sup>, and 188.26 ± 1.13 mW/m<sup>2</sup>, respectively. Moreover, Our study shows a greater PEM cost reduction with commercial Nafion 117 PEM in terms of consumed cost of $7.04, $0.21, and $2.41 for making MFCs with Nafion 117 (9 cm<sup>2</sup>), NCSCS PEM (15 cm<sup>3</sup>) (with 97.02 % reduced cost) and salt bridge (15 cm<sup>3</sup>) (with 65.77 % reduced cost) respectively. Our MFC setup cost was reduced by 70.29 % by replacing Nafion 117 with durable NCSCS PEM. Using our cost-effective, better-performing, durable NCSCS in MFC makes the MFC technology or any other technology that needs PEM feasible on a larger scale.</p></div>","PeriodicalId":8947,"journal":{"name":"Bioresource Technology Reports","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589014X24001701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial Fuel Cells (MFCs) are a substitute for fossil-fuel-based electricity generation. They are innovative bioelectrochemical systems that use microbial catalysts to convert organic waste directly into electrical energy. However, MFCs face several commercialization challenges, including expensive Proton Exchange Membranes (PEMs), making them unaffordable. The present research aims to develop cost-effective, environmentally friendly, high-performance PEM to make MFC technology more viable. The study analyzed using MFCs with different PEMs with native microflora and Serratia marcescens (AATB1) as biocatalysts to produce bioelectricity and treat septic tank wastewater (STWW). The experiment included a control group with sterile STWW. The study involves fabricating and characterizing the optimized Novel Cement Supported Conductive Salts PEM (NCSCS PEM) using SEM, TGA, and EIS techniques. The commercial Nafion 117 and salt bridge were used to compare NCSCS PEM in MFCs. The anode biofilm was investigated using CV, CLSM, and SEM. The MFCs with Nafion 117, NCSCS PEM, and Salt bridge produced power densities of 126.6 ± 1.06 mW/m2, 204.04 ± 0.87 mW/m2, and 188.26 ± 1.13 mW/m2, respectively. Moreover, Our study shows a greater PEM cost reduction with commercial Nafion 117 PEM in terms of consumed cost of $7.04, $0.21, and $2.41 for making MFCs with Nafion 117 (9 cm2), NCSCS PEM (15 cm3) (with 97.02 % reduced cost) and salt bridge (15 cm3) (with 65.77 % reduced cost) respectively. Our MFC setup cost was reduced by 70.29 % by replacing Nafion 117 with durable NCSCS PEM. Using our cost-effective, better-performing, durable NCSCS in MFC makes the MFC technology or any other technology that needs PEM feasible on a larger scale.

Abstract Image

用于微生物燃料电池生物发电的高效、新型和低成本质子交换膜
微生物燃料电池(MFC)是化石燃料发电的替代品。它是一种创新的生物电化学系统,利用微生物催化剂将有机废物直接转化为电能。然而,MFCs 在商业化方面面临一些挑战,包括质子交换膜(PEM)价格昂贵,使人们难以承受。本研究旨在开发具有成本效益、环保、高性能的质子交换膜,使 MFC 技术更加可行。该研究分析了使用不同 PEM 的 MFC 与本地微生物菌群和 Serratia marcescens(AATB1)作为生物催化剂来生产生物电和处理化粪池废水(STWW)。实验包括一个无菌 STWW 对照组。研究包括使用 SEM、TGA 和 EIS 技术制造和表征优化的新型水泥支撑导电盐 PEM(NCSCS PEM)。商用 Nafion 117 和盐桥用于比较 MFC 中的 NCSCS PEM。使用 CV、CLSM 和 SEM 对阳极生物膜进行了研究。使用 Nafion 117、NCSCS PEM 和盐桥的 MFC 产生的功率密度分别为 126.6 ± 1.06 mW/m2、204.04 ± 0.87 mW/m2 和 188.26 ± 1.13 mW/m2。此外,我们的研究还表明,使用商用 Nafion 117 PEM(9 cm2)、NCSCS PEM(15 cm3)(成本降低 97.02%)和盐桥(15 cm3)(成本降低 65.77%)制造 MFC 的 PEM 成本降低幅度更大,消耗成本分别为 7.04 美元、0.21 美元和 2.41 美元。用耐用的 NCSCS PEM 取代 Nafion 117 后,我们的 MFC 设置成本降低了 70.29%。在 MFC 中使用我们这种成本效益高、性能更好、经久耐用的 NCSCS,使 MFC 技术或任何其他需要 PEM 的技术在更大范围内变得可行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology Reports
Bioresource Technology Reports Environmental Science-Environmental Engineering
CiteScore
7.20
自引率
0.00%
发文量
390
审稿时长
28 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信