Breathing discrete nonlinear Schrödinger vortices

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
{"title":"Breathing discrete nonlinear Schrödinger vortices","authors":"","doi":"10.1016/j.wavemoti.2024.103393","DOIUrl":null,"url":null,"abstract":"<div><p>Breathing discrete vortices are obtained as numerically exact and generally quasiperiodic, localized solutions to the discrete nonlinear Schrödinger equation with cubic (Kerr) on-site nonlinearity, on a two-dimensional square lattice with nearest-neighbor couplings. We identify and analyze three different types of solutions characterized by circulating currents and time-periodically oscillating intensity distributions, two of which have been discussed in earlier works while the third being, to our knowledge, presented here for the first time. (i) A vortex-breather, constructed from the anticontinuous limit as a superposition of a single-site breather and a discrete vortex surrounding it, where the breather and vortex are oscillating at different frequencies. (ii) A charge-flipping vortex, constructed from an anticontinuous solution with an even number of sites on a closed loop, with alternating sites oscillating at different frequencies. (iii) A breathing vortex, constructed by continuation of a non-resonating linear internal eigenmode of a stationary discrete vortex. We illustrate by examples, using numerical Floquet analysis for solutions obtained from a Newton scheme, that linearly stable solutions exist from all three categories, at sufficiently strong discreteness.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165212524001239/pdfft?md5=a9323042969a74ceee36cd4d691192c0&pid=1-s2.0-S0165212524001239-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001239","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Breathing discrete vortices are obtained as numerically exact and generally quasiperiodic, localized solutions to the discrete nonlinear Schrödinger equation with cubic (Kerr) on-site nonlinearity, on a two-dimensional square lattice with nearest-neighbor couplings. We identify and analyze three different types of solutions characterized by circulating currents and time-periodically oscillating intensity distributions, two of which have been discussed in earlier works while the third being, to our knowledge, presented here for the first time. (i) A vortex-breather, constructed from the anticontinuous limit as a superposition of a single-site breather and a discrete vortex surrounding it, where the breather and vortex are oscillating at different frequencies. (ii) A charge-flipping vortex, constructed from an anticontinuous solution with an even number of sites on a closed loop, with alternating sites oscillating at different frequencies. (iii) A breathing vortex, constructed by continuation of a non-resonating linear internal eigenmode of a stationary discrete vortex. We illustrate by examples, using numerical Floquet analysis for solutions obtained from a Newton scheme, that linearly stable solutions exist from all three categories, at sufficiently strong discreteness.

会呼吸的离散非线性薛定谔漩涡
呼吸离散旋涡是在具有近邻耦合的二维正方形晶格上,作为具有立方(克尔)现场非线性的离散非线性薛定谔方程的数值精确和一般准周期局部解而获得的。我们识别并分析了三种不同类型的解,它们以环流和时间周期性振荡强度分布为特征,其中两种已在早期著作中讨论过,而第三种据我们所知是首次在这里提出。(i) 涡旋呼吸器,由反连续极限构造而成,是单点呼吸器和围绕呼吸器的离散涡旋的叠加,其中呼吸器和涡旋以不同频率振荡。(ii) 电荷翻转漩涡,由封闭环路上偶数位点的反连续解构建而成,交替位点以不同频率振荡。(iii) 呼吸漩涡,由静止离散漩涡的非共振线性内部特征模的延续构造而成。我们通过实例,利用对牛顿方案求得的解进行数值 Floquet 分析,说明在足够强的离散度下,这三类解都存在线性稳定的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信