Epileptic network identification: insights from dynamic mode decomposition of sEEG data.

Alejandro Nieto Ramos, Balu Krishnan, Andreas V Alexopoulos, William Bingaman, Imad Najm, Juan C Bulacio, Demitre Serletis
{"title":"Epileptic network identification: insights from dynamic mode decomposition of sEEG data.","authors":"Alejandro Nieto Ramos, Balu Krishnan, Andreas V Alexopoulos, William Bingaman, Imad Najm, Juan C Bulacio, Demitre Serletis","doi":"10.1088/1741-2552/ad705f","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>For medically-refractory epilepsy patients, stereoelectroencephalography (sEEG) is a surgical method using intracranial electrode recordings to identify brain networks participating in early seizure organization and propagation (i.e. the epileptogenic zone, EZ). If identified, surgical EZ treatment via resection, ablation or neuromodulation can lead to seizure-freedom. To date, quantification of sEEG data, including its visualization and interpretation, remains a clinical and computational challenge. Given elusiveness of physical laws or governing equations modelling complex brain dynamics, data science offers unique insight into identifying unknown patterns within high-dimensional sEEG data. We apply here an unsupervised data-driven algorithm, dynamic mode decomposition (DMD), to sEEG recordings from five focal epilepsy patients (three with temporal lobe, and two with cingulate epilepsy), who underwent subsequent resective or ablative surgery and became seizure free.<i>Approach.</i>DMD obtains a linear approximation of nonlinear data dynamics, generating coherent structures ('modes') defining important signal features, used to extract frequencies, growth rates and spatial structures. DMD was adapted to produce dynamic modal maps (DMMs) across frequency sub-bands, capturing onset and evolution of epileptiform dynamics in sEEG data. Additionally, we developed a static estimate of EZ-localized electrode contacts, termed the higher-frequency mode-based norm index (MNI). DMM and MNI maps for representative patient seizures were validated against clinical sEEG results and seizure-free outcomes following surgery.<i>Main results.</i>DMD was most informative at higher frequencies, i.e. gamma (including high-gamma) and beta range, successfully identifying EZ contacts. Combined interpretation of DMM/MNI plots best identified spatiotemporal evolution of mode-specific network changes, with strong concordance to sEEG results and outcomes across all five patients. The method identified network attenuation in other contacts not implicated in the EZ.<i>Significance.</i>This is the first application of DMD to sEEG data analysis, supporting integration of neuroengineering, mathematical and machine learning methods into traditional workflows for sEEG review and epilepsy surgical decision-making.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad705f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.For medically-refractory epilepsy patients, stereoelectroencephalography (sEEG) is a surgical method using intracranial electrode recordings to identify brain networks participating in early seizure organization and propagation (i.e. the epileptogenic zone, EZ). If identified, surgical EZ treatment via resection, ablation or neuromodulation can lead to seizure-freedom. To date, quantification of sEEG data, including its visualization and interpretation, remains a clinical and computational challenge. Given elusiveness of physical laws or governing equations modelling complex brain dynamics, data science offers unique insight into identifying unknown patterns within high-dimensional sEEG data. We apply here an unsupervised data-driven algorithm, dynamic mode decomposition (DMD), to sEEG recordings from five focal epilepsy patients (three with temporal lobe, and two with cingulate epilepsy), who underwent subsequent resective or ablative surgery and became seizure free.Approach.DMD obtains a linear approximation of nonlinear data dynamics, generating coherent structures ('modes') defining important signal features, used to extract frequencies, growth rates and spatial structures. DMD was adapted to produce dynamic modal maps (DMMs) across frequency sub-bands, capturing onset and evolution of epileptiform dynamics in sEEG data. Additionally, we developed a static estimate of EZ-localized electrode contacts, termed the higher-frequency mode-based norm index (MNI). DMM and MNI maps for representative patient seizures were validated against clinical sEEG results and seizure-free outcomes following surgery.Main results.DMD was most informative at higher frequencies, i.e. gamma (including high-gamma) and beta range, successfully identifying EZ contacts. Combined interpretation of DMM/MNI plots best identified spatiotemporal evolution of mode-specific network changes, with strong concordance to sEEG results and outcomes across all five patients. The method identified network attenuation in other contacts not implicated in the EZ.Significance.This is the first application of DMD to sEEG data analysis, supporting integration of neuroengineering, mathematical and machine learning methods into traditional workflows for sEEG review and epilepsy surgical decision-making.

癫痫网络识别:动态模式分解 sEEG 数据的启示。
目的:对于药物难治性癫痫患者,立体脑电图(sEEG)是一种外科手术方法,通过颅内记录来识别参与早期癫痫组织和传播的大脑网络(即致痫区,EZ)。如果确定了致痫区,通过切除、消融或神经调控对其进行手术治疗,就能使癫痫发作痊愈。迄今为止,sEEG 数据的量化,包括其可视化和解释,仍然是临床和计算方面的挑战。鉴于模拟复杂脑动力学的物理定律或管理方程难以捉摸,数据科学为识别高维 sEEG 数据中的未知模式提供了独特的见解。在此,我们将一种无监督的数据驱动算法--动态模式分解(DMD)应用于五名局灶性癫痫患者(三名颞叶癫痫患者和两名扣带回癫痫患者)的 sEEG 记录,这些患者随后接受了切除或消融手术,癫痫不再发作:方法:DMD 获取非线性数据动态的线性近似值,生成定义重要信号特征的相干结构("模式"),用于提取频率、增长率和空间结构。我们对 DMD 进行了调整,以生成跨频率子带的动态模态图 (DMM),捕捉 sEEG 数据中癫痫样动态的开始和演变。此外,我们还开发了 EZ 定位电极接触的静态估计值,称为基于高频模式的规范指数(MNI)。针对代表性患者癫痫发作的 DMM 和 MNI 图与临床 sEEG 结果和术后无癫痫发作结果进行了验证:主要结果:DMD 在较高频率,即伽马(包括高伽马)和贝塔范围内信息量最大,可成功识别 EZ 接触点。对 DMM/MNI 图的综合解释最能确定特定模式网络变化的时空演变,与所有五名患者的 sEEG 结果和预后非常吻合。该方法还能识别与 EZ 无关的其他接触点的网络衰减:这是 DMD 在 sEEG 数据分析中的首次应用,支持将神经工程、数学和机器学习方法整合到传统的 sEEG 检查和癫痫手术决策工作流程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信