Heterologous expression and characterization of a dye-decolorizing peroxidase from Ganoderma lucidum, and its application in decolorization and detoxifization of different types of dyes.
IF 4 3区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Dongmei Liu, Wentong Diao, Hong Chen, Xiwu Qi, Hailing Fang, Xu Yu, Li Li, Yang Bai, Chengyuan Liang
{"title":"Heterologous expression and characterization of a dye-decolorizing peroxidase from Ganoderma lucidum, and its application in decolorization and detoxifization of different types of dyes.","authors":"Dongmei Liu, Wentong Diao, Hong Chen, Xiwu Qi, Hailing Fang, Xu Yu, Li Li, Yang Bai, Chengyuan Liang","doi":"10.1007/s11274-024-04084-x","DOIUrl":null,"url":null,"abstract":"<p><p>Dye-decolorizing peroxidases (DyPs) belong to a novel superfamily of heme peroxidases that can oxidize recalcitrant compounds. In the current study, the GlDyP2 gene from Ganoderma lucidum was heterologously expressed in Escherichia coli, and the enzymatic properties of the recombinant GlDyP2 protein were investigated. The GlDyP2 protein could oxidize not only the typical peroxidase substrate ABTS but also two lignin substrates, namely guaiacol and 2,6-dimethoxy phenol (DMP). For the ABTS substrate, the optimum pH and temperature of GlDyP2 were 4.0 and 35 °C, respectively. The pH stability and thermal stability of GlDyP2 were also measured; the results showed that GlDyP2 could function normally in the acidic environment, with a T<sub>50</sub> value of 51 °C. Moreover, compared to untreated controls, the activity of GlDyP2 was inhibited by 1.60 mM of Mg<sup>2+</sup>, Ni<sup>2+</sup>, Mn<sup>2+</sup>, and ethanol; 0.16 mM of Cu<sup>2+</sup>, Zn<sup>2+</sup>, methanol, isopropyl alcohol, and Na<sub>2</sub>EDTA·2H<sub>2</sub>O; and 0.016 mM of Fe<sup>2+</sup> and SDS. The kinetic constants of recombinant GlDyP2 for oxidizing ABTS, Reactive Blue 19, guaiacol, and DMP were determined; the results showed that the recombination GlDyP2 exhibited the strongest affinity and the most remarkable catalytic efficiency towards guaiacol in the selected substrates. GlDyP2 also exhibited decolorization and detoxification capabilities towards several dyes, including Reactive Blue 19, Reactive Brilliant Blue X-BR, Reactive Black 5, Methyl Orange, Trypan Blue, and Malachite Green. In conclusion, GlDyP2 has good application potential for treating dye wastewater.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 10","pages":"303"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04084-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dye-decolorizing peroxidases (DyPs) belong to a novel superfamily of heme peroxidases that can oxidize recalcitrant compounds. In the current study, the GlDyP2 gene from Ganoderma lucidum was heterologously expressed in Escherichia coli, and the enzymatic properties of the recombinant GlDyP2 protein were investigated. The GlDyP2 protein could oxidize not only the typical peroxidase substrate ABTS but also two lignin substrates, namely guaiacol and 2,6-dimethoxy phenol (DMP). For the ABTS substrate, the optimum pH and temperature of GlDyP2 were 4.0 and 35 °C, respectively. The pH stability and thermal stability of GlDyP2 were also measured; the results showed that GlDyP2 could function normally in the acidic environment, with a T50 value of 51 °C. Moreover, compared to untreated controls, the activity of GlDyP2 was inhibited by 1.60 mM of Mg2+, Ni2+, Mn2+, and ethanol; 0.16 mM of Cu2+, Zn2+, methanol, isopropyl alcohol, and Na2EDTA·2H2O; and 0.016 mM of Fe2+ and SDS. The kinetic constants of recombinant GlDyP2 for oxidizing ABTS, Reactive Blue 19, guaiacol, and DMP were determined; the results showed that the recombination GlDyP2 exhibited the strongest affinity and the most remarkable catalytic efficiency towards guaiacol in the selected substrates. GlDyP2 also exhibited decolorization and detoxification capabilities towards several dyes, including Reactive Blue 19, Reactive Brilliant Blue X-BR, Reactive Black 5, Methyl Orange, Trypan Blue, and Malachite Green. In conclusion, GlDyP2 has good application potential for treating dye wastewater.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.