Cameron X Villarreal, Xin Shen, Ahmad A Alhulail, Nicholas M Buffo, Xiaopeng Zhou, Evan Pogue, Ali Caglar Özen, Mark Chiew, Stephen Sawiak, Uzay Emir, Deva D Chan
{"title":"An accelerated PETALUTE MRI sequence for in vivo quantification of sodium content in human articular cartilage at 3T.","authors":"Cameron X Villarreal, Xin Shen, Ahmad A Alhulail, Nicholas M Buffo, Xiaopeng Zhou, Evan Pogue, Ali Caglar Özen, Mark Chiew, Stephen Sawiak, Uzay Emir, Deva D Chan","doi":"10.1007/s00256-024-04774-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>In this work, we evaluate the sodium magnetic resonance imaging (MRI) capabilities of a three-dimensional (3D) dual-echo ultrashort echo time (UTE) sequence with a novel rosette petal trajectory (PETALUTE), in comparison to the 3D density-adapted (DA) radial spokes UTE sequence in human articular cartilage in the knee.</p><p><strong>Materials and methods: </strong>We scanned five healthy subjects using a 3D dual-echo PETALUTE acquisition and two comparable implementations of 3D DA-radial spokes acquisitions, one matching the number of k-space projections (Radial - Matched Spokes) and the other matching the total number of samples (Radial - Matched Samples) acquired in k-space.</p><p><strong>Results: </strong>The PETALUTE acquisition enabled equivalent sodium quantification in articular cartilage volumes of interest (168.8 ± 29.9 mM, mean ± standard deviation) to those derived from the 3D radial acquisitions (171.62 ± 28.7 mM and 149.8 ± 22.2 mM, respectively). We achieved a 41% shorter scan time of 2:06 for 3D PETALUTE, compared to 3:36 for 3D radial acquisitions. We also evaluated the feasibility of further acceleration of the PETALUTE sequence through retrospective compressed sensing with 2 × and 4 × acceleration of the first echo and showed structural similarity of 0.89 ± 0.03 and 0.87 ± 0.03 when compared to non-retrospectively accelerated reconstruction.</p><p><strong>Conclusion: </strong>We demonstrate improved scan time with equivalent performance using a 3D dual-echo PETALUTE sequence compared to the 3D DA-radial sequence for sodium MRI of articular cartilage.</p>","PeriodicalId":21783,"journal":{"name":"Skeletal Radiology","volume":" ","pages":"601-610"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00256-024-04774-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: In this work, we evaluate the sodium magnetic resonance imaging (MRI) capabilities of a three-dimensional (3D) dual-echo ultrashort echo time (UTE) sequence with a novel rosette petal trajectory (PETALUTE), in comparison to the 3D density-adapted (DA) radial spokes UTE sequence in human articular cartilage in the knee.
Materials and methods: We scanned five healthy subjects using a 3D dual-echo PETALUTE acquisition and two comparable implementations of 3D DA-radial spokes acquisitions, one matching the number of k-space projections (Radial - Matched Spokes) and the other matching the total number of samples (Radial - Matched Samples) acquired in k-space.
Results: The PETALUTE acquisition enabled equivalent sodium quantification in articular cartilage volumes of interest (168.8 ± 29.9 mM, mean ± standard deviation) to those derived from the 3D radial acquisitions (171.62 ± 28.7 mM and 149.8 ± 22.2 mM, respectively). We achieved a 41% shorter scan time of 2:06 for 3D PETALUTE, compared to 3:36 for 3D radial acquisitions. We also evaluated the feasibility of further acceleration of the PETALUTE sequence through retrospective compressed sensing with 2 × and 4 × acceleration of the first echo and showed structural similarity of 0.89 ± 0.03 and 0.87 ± 0.03 when compared to non-retrospectively accelerated reconstruction.
Conclusion: We demonstrate improved scan time with equivalent performance using a 3D dual-echo PETALUTE sequence compared to the 3D DA-radial sequence for sodium MRI of articular cartilage.
期刊介绍:
Skeletal Radiology provides a forum for the dissemination of current knowledge and information dealing with disorders of the musculoskeletal system including the spine. While emphasizing the radiological aspects of the many varied skeletal abnormalities, the journal also adopts an interdisciplinary approach, reflecting the membership of the International Skeletal Society. Thus, the anatomical, pathological, physiological, clinical, metabolic and epidemiological aspects of the many entities affecting the skeleton receive appropriate consideration.
This is the Journal of the International Skeletal Society and the Official Journal of the Society of Skeletal Radiology and the Australasian Musculoskelelal Imaging Group.