{"title":"Novel spin-lock time sampling strategies for improved reproducibility in quantitative T1ρ mapping.","authors":"Sandeep Panwar Jogi, Qi Peng, Ramin Jafari, Ricardo Otazo, Can Wu","doi":"10.1002/nbm.5244","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to optimize the sampling of spin-lock times (TSLs) in quantitative T1ρ mapping for improved reproducibility. Two new TSL sampling schemes were proposed: (i) reproducibility-guided random sampling (RRS) and (ii) reproducibility-guided optimal sampling (ROS). They were compared to the existing linear sampling (LS) and precision-guided sampling (PS) schemes for T1ρ reproducibility through numerical simulations, phantom experiments, and volunteer studies. Each study evaluated the four sampling schemes with three commonly used T1ρ preparations based on composite and balanced spin-locking. Additionally, the phantom and volunteer studies investigated the impact of B<sub>0</sub> and B<sub>1</sub> field inhomogeneities on T1ρ reproducibility, respectively. The reproducibility was assessed using the coefficient of variation (CoV) by repeating the T1ρ measurements eight times for phantom experiments and five times for volunteer studies. Numerical simulations resulted in lower mean CoVs for the proposed RRS (1.74%) and ROS (0.68%) compared to LS (2.93%) and PS (3.68%). In the phantom study, the mean CoVs were also lower for RRS (2.7%) and ROS (2.6%) compared to LS (4.1%) and PS (3.1%). Furthermore, the mean CoVs of the proposed RRS and ROS were statistically lower (P < 0.001) compared to existing LS and PS schemes at a B<sub>1</sub> offset of 20%. In the volunteer study, consistently lower mean CoVs were observed in bilateral thigh muscles for RRS (9.3%) and ROS (9.2%) compared to LS (10.9%) and PS (10.2%), and the difference was more prominent at B<sub>0</sub> offsets higher than 50 Hz. The proposed sampling schemes improve the reproducibility of quantitative T1ρ mapping by optimizing the selection of TSLs. This improvement is especially beneficial for longitudinal studies that track and monitor disease progression and treatment response.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5244"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612825/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5244","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to optimize the sampling of spin-lock times (TSLs) in quantitative T1ρ mapping for improved reproducibility. Two new TSL sampling schemes were proposed: (i) reproducibility-guided random sampling (RRS) and (ii) reproducibility-guided optimal sampling (ROS). They were compared to the existing linear sampling (LS) and precision-guided sampling (PS) schemes for T1ρ reproducibility through numerical simulations, phantom experiments, and volunteer studies. Each study evaluated the four sampling schemes with three commonly used T1ρ preparations based on composite and balanced spin-locking. Additionally, the phantom and volunteer studies investigated the impact of B0 and B1 field inhomogeneities on T1ρ reproducibility, respectively. The reproducibility was assessed using the coefficient of variation (CoV) by repeating the T1ρ measurements eight times for phantom experiments and five times for volunteer studies. Numerical simulations resulted in lower mean CoVs for the proposed RRS (1.74%) and ROS (0.68%) compared to LS (2.93%) and PS (3.68%). In the phantom study, the mean CoVs were also lower for RRS (2.7%) and ROS (2.6%) compared to LS (4.1%) and PS (3.1%). Furthermore, the mean CoVs of the proposed RRS and ROS were statistically lower (P < 0.001) compared to existing LS and PS schemes at a B1 offset of 20%. In the volunteer study, consistently lower mean CoVs were observed in bilateral thigh muscles for RRS (9.3%) and ROS (9.2%) compared to LS (10.9%) and PS (10.2%), and the difference was more prominent at B0 offsets higher than 50 Hz. The proposed sampling schemes improve the reproducibility of quantitative T1ρ mapping by optimizing the selection of TSLs. This improvement is especially beneficial for longitudinal studies that track and monitor disease progression and treatment response.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.