Julia Wiedemann, Sai K Paruchuru, Lisette E den Boef, Uilke Brouwer, Herman H W Silljé, Elisabeth M Schouten, Michael G Dickinson, Marc-Jan van Goethem, Robert P Coppes, Peter van Luijk
{"title":"Sparing of the Heart Facilitates Recovery From Cardiopulmonary Side Effects After Thoracic Irradiation.","authors":"Julia Wiedemann, Sai K Paruchuru, Lisette E den Boef, Uilke Brouwer, Herman H W Silljé, Elisabeth M Schouten, Michael G Dickinson, Marc-Jan van Goethem, Robert P Coppes, Peter van Luijk","doi":"10.1016/j.ijrobp.2024.07.2330","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>When irradiating thoracic tumors, dose to the heart or lung has been associated with survival. We previously showed in a rat model that in addition to known side effects such as pericarditis, pneumonitis and fibrosis, heart and/or lung irradiation also impaired diastolic function and increased pulmonary artery pressure. Simultaneous irradiation of both organs strongly intensified these effects. However, the long-term consequences of these interactions are not yet known. Therefore, here, we investigated the long-term effects of combined heart and lung irradiation.</p><p><strong>Methods and materials: </strong>Different regions of the rat thorax containing the heart and/or 50% of the lungs were irradiated with protons. Respiratory rate (RR) was measured biweekly as an overall parameter for cardiopulmonary function. Echocardiography of the heart was performed at 8, 26, and 42 weeks after irradiation. Tissue remodeling and vascular changes were assessed using Masson trichrome and Verhoeff-stained lung and left ventricle tissue collected at 8 and 42 weeks after irradiation.</p><p><strong>Results: </strong>During the entire experimental period RR was consistently increased after combined heart/lung irradiation. This coincided with persistent effects on lung vasculature and reduced right-ventricle (RV) contraction. In contrast, recovery of RR, pulmonary remodeling and RV contraction was observed after sparing of the heart. These corresponding temporal patterns suggest that the reduction of RV function is related to vascular remodeling in the lung.</p><p><strong>Conclusions: </strong>Combined irradiation of lung and heart leads to an intensified, persistent reduction of cardiopulmonary function. Recovery of the pulmonary vasculature and RV function requires heart sparing.</p>","PeriodicalId":14215,"journal":{"name":"International Journal of Radiation Oncology Biology Physics","volume":" ","pages":"191-201"},"PeriodicalIF":6.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Radiation Oncology Biology Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijrobp.2024.07.2330","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: When irradiating thoracic tumors, dose to the heart or lung has been associated with survival. We previously showed in a rat model that in addition to known side effects such as pericarditis, pneumonitis and fibrosis, heart and/or lung irradiation also impaired diastolic function and increased pulmonary artery pressure. Simultaneous irradiation of both organs strongly intensified these effects. However, the long-term consequences of these interactions are not yet known. Therefore, here, we investigated the long-term effects of combined heart and lung irradiation.
Methods and materials: Different regions of the rat thorax containing the heart and/or 50% of the lungs were irradiated with protons. Respiratory rate (RR) was measured biweekly as an overall parameter for cardiopulmonary function. Echocardiography of the heart was performed at 8, 26, and 42 weeks after irradiation. Tissue remodeling and vascular changes were assessed using Masson trichrome and Verhoeff-stained lung and left ventricle tissue collected at 8 and 42 weeks after irradiation.
Results: During the entire experimental period RR was consistently increased after combined heart/lung irradiation. This coincided with persistent effects on lung vasculature and reduced right-ventricle (RV) contraction. In contrast, recovery of RR, pulmonary remodeling and RV contraction was observed after sparing of the heart. These corresponding temporal patterns suggest that the reduction of RV function is related to vascular remodeling in the lung.
Conclusions: Combined irradiation of lung and heart leads to an intensified, persistent reduction of cardiopulmonary function. Recovery of the pulmonary vasculature and RV function requires heart sparing.
期刊介绍:
International Journal of Radiation Oncology • Biology • Physics (IJROBP), known in the field as the Red Journal, publishes original laboratory and clinical investigations related to radiation oncology, radiation biology, medical physics, and both education and health policy as it relates to the field.
This journal has a particular interest in original contributions of the following types: prospective clinical trials, outcomes research, and large database interrogation. In addition, it seeks reports of high-impact innovations in single or combined modality treatment, tumor sensitization, normal tissue protection (including both precision avoidance and pharmacologic means), brachytherapy, particle irradiation, and cancer imaging. Technical advances related to dosimetry and conformal radiation treatment planning are of interest, as are basic science studies investigating tumor physiology and the molecular biology underlying cancer and normal tissue radiation response.