{"title":"Identification and characterization of a novel type II toxin-antitoxin system in Aeromonas veronii","authors":"Caihong Ji, Ting He, Binbin Wu, Xiaomei Cao, Xiaping Fan, Xia Liu, Xiaodan Li, Miao Yang, Jihan Wang, Ling Xu, Shengbiao Hu, Liqiu Xia, Yunjun Sun","doi":"10.1007/s00203-024-04101-5","DOIUrl":null,"url":null,"abstract":"<div><p>The bacterial type II toxin-antitoxin (TA) system is a rich genetic element that participates in various physiological processes. <i>Aeromonas veronii</i> is the main bacterial pathogen threatening the freshwater aquaculture industry. However, the distribution of type II TA system in <i>A. veronii</i> was seldom documented and its roles in the life activities of <i>A. veronii</i> were still unexplored. In this study, a novel type II TA system AvtA-AvtT was predicted in a fish pathogen <i>Aeromonas veronii</i> biovar sobria with multi-drug resistance using TADB 2.0. Through an <i>Escherichia coli</i> host killing and rescue assay, we demonstrated that AvtA and AvtT worked as a genuine TA system, and the predicted toxin AvtT actually functioned as an antitoxin while the predicted antitoxin AvtA actually functioned as a toxin. The binding ability of AvtA with AvtT proteins were confirmed by dot blotting analysis and co-immunoprecipitation assay. Furthermore, we found that the toxin and antitoxin labelled with fluorescent proteins were co-localized. In addition, it was found that the transcription of AvtAT bicistronic operon was repressed by the AvtAT protein complex. Deletion of <i>avtA</i> gene and <i>avtT</i> gene had no obvious effect on the drug susceptibility. This study provides first characterization of type II TA system AvtA-AvtT in aquatic pathogen <i>A. veronii</i>.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04101-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The bacterial type II toxin-antitoxin (TA) system is a rich genetic element that participates in various physiological processes. Aeromonas veronii is the main bacterial pathogen threatening the freshwater aquaculture industry. However, the distribution of type II TA system in A. veronii was seldom documented and its roles in the life activities of A. veronii were still unexplored. In this study, a novel type II TA system AvtA-AvtT was predicted in a fish pathogen Aeromonas veronii biovar sobria with multi-drug resistance using TADB 2.0. Through an Escherichia coli host killing and rescue assay, we demonstrated that AvtA and AvtT worked as a genuine TA system, and the predicted toxin AvtT actually functioned as an antitoxin while the predicted antitoxin AvtA actually functioned as a toxin. The binding ability of AvtA with AvtT proteins were confirmed by dot blotting analysis and co-immunoprecipitation assay. Furthermore, we found that the toxin and antitoxin labelled with fluorescent proteins were co-localized. In addition, it was found that the transcription of AvtAT bicistronic operon was repressed by the AvtAT protein complex. Deletion of avtA gene and avtT gene had no obvious effect on the drug susceptibility. This study provides first characterization of type II TA system AvtA-AvtT in aquatic pathogen A. veronii.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.