{"title":"P-glycoprotein-mediated herb–drug interaction evaluation between Tenacissoside G and paclitaxel","authors":"Jiudong Hu, Yujie Hu, Lingyan Xu, Junjun Chen, Meizhi Shi, Wenhui Wu, Jiao Yang, Yonglong Han","doi":"10.1002/bmc.5984","DOIUrl":null,"url":null,"abstract":"<p>P-glycoprotein (P-gp)-mediated herb–drug interactions (HDIs) may impact drug efficacy and safety. Tenacissoside G (Tsd-G), a major active component of <i>Marsdenia tenacissima</i>, exhibits anticancer activity. To analyze the effect of Tsd-G on the pharmacokinetics of paclitaxel (PTX), researchers selected 30 Sprague–Dawley (SD) rats, randomized into a solvent control group, a verapamil positive control group, and 20, 40, and 60 mg/kg Tsd-G groups. After seven consecutive days of intraperitoneal injection of verapamil or Tsd-G, a single dose of 6 mg/kg PTX was injected intravenously. Plasma samples were collected at different time points, and proteins were precipitated using a methanol–acetonitrile solution. An ultrahigh-performance liquid chromatography–tandem mass spectrometry method was developed, with docetaxel as an internal standard, and quantified using positive ion multiple reaction monitoring (MRM) mode. This analytical method's specificity, accuracy, precision, recovery, matrix effect, and sample stability meet the requirements for biological sample determination. After Tsd-G administration in rats, the mean residence time of PTX was significantly prolonged. And Tsd-G can stably bind to P-gp by forming hydrogen bonds and inhibiting the expression of P-gp in rat liver. Although the metabolites of PTX were not detected in this study, the above results still indicate the existence of HDIs between Tsd-G and PTX, and P-gp may be the main target to mediate HDIs.</p>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"38 10","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmc.5984","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
P-glycoprotein (P-gp)-mediated herb–drug interactions (HDIs) may impact drug efficacy and safety. Tenacissoside G (Tsd-G), a major active component of Marsdenia tenacissima, exhibits anticancer activity. To analyze the effect of Tsd-G on the pharmacokinetics of paclitaxel (PTX), researchers selected 30 Sprague–Dawley (SD) rats, randomized into a solvent control group, a verapamil positive control group, and 20, 40, and 60 mg/kg Tsd-G groups. After seven consecutive days of intraperitoneal injection of verapamil or Tsd-G, a single dose of 6 mg/kg PTX was injected intravenously. Plasma samples were collected at different time points, and proteins were precipitated using a methanol–acetonitrile solution. An ultrahigh-performance liquid chromatography–tandem mass spectrometry method was developed, with docetaxel as an internal standard, and quantified using positive ion multiple reaction monitoring (MRM) mode. This analytical method's specificity, accuracy, precision, recovery, matrix effect, and sample stability meet the requirements for biological sample determination. After Tsd-G administration in rats, the mean residence time of PTX was significantly prolonged. And Tsd-G can stably bind to P-gp by forming hydrogen bonds and inhibiting the expression of P-gp in rat liver. Although the metabolites of PTX were not detected in this study, the above results still indicate the existence of HDIs between Tsd-G and PTX, and P-gp may be the main target to mediate HDIs.
期刊介绍:
Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.