Jinyan Ma;Da Li;Hanzhi Ma;Ruifeng Li;Ling Zhang;Michal Mrozowski;Er-Ping Li
{"title":"An Efficient PEEC-Based Method for Full-Wave Analysis of Microstrip Structures","authors":"Jinyan Ma;Da Li;Hanzhi Ma;Ruifeng Li;Ling Zhang;Michal Mrozowski;Er-Ping Li","doi":"10.1109/TEMC.2024.3430472","DOIUrl":null,"url":null,"abstract":"This article introduces an efficient method for the equivalent circuit characterization and full-wave analysis of microstrip structures, leveraging the full-wave partial element equivalent circuit (PEEC). In particular, the multilayered Green's function is evaluated using the discrete complex-image method (DCIM) and employed to establish the mixed potential integral equations. The proposed strategy considers time delays for the retarded electric and magnetic couplings, offering a new efficient full-wave approach to extract equivalent circuit components, which encapsulate the contributions of the quasi-static, surface-wave, and complex images. It is noted that the proposed full-wave PEEC strategy allows each component contribution derived from DCIM to be efficiently represented as frequency-independent lumped circuit elements and corresponding frequency factors, thereby simplifying the extraction process of the entire frequency-dependent lumped elements in the traditional PEEC method. Moreover, the proposed PEEC model, equipped with full-wave equivalent circuits, offers clear physical insight into electromagnetic behaviors, thereby facilitating design and optimization. Finally, the accuracy and efficiency of the proposed PEEC model are fully demonstrated through various examples and experiments.","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"66 5","pages":"1585-1595"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electromagnetic Compatibility","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10637419/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article introduces an efficient method for the equivalent circuit characterization and full-wave analysis of microstrip structures, leveraging the full-wave partial element equivalent circuit (PEEC). In particular, the multilayered Green's function is evaluated using the discrete complex-image method (DCIM) and employed to establish the mixed potential integral equations. The proposed strategy considers time delays for the retarded electric and magnetic couplings, offering a new efficient full-wave approach to extract equivalent circuit components, which encapsulate the contributions of the quasi-static, surface-wave, and complex images. It is noted that the proposed full-wave PEEC strategy allows each component contribution derived from DCIM to be efficiently represented as frequency-independent lumped circuit elements and corresponding frequency factors, thereby simplifying the extraction process of the entire frequency-dependent lumped elements in the traditional PEEC method. Moreover, the proposed PEEC model, equipped with full-wave equivalent circuits, offers clear physical insight into electromagnetic behaviors, thereby facilitating design and optimization. Finally, the accuracy and efficiency of the proposed PEEC model are fully demonstrated through various examples and experiments.
期刊介绍:
IEEE Transactions on Electromagnetic Compatibility publishes original and significant contributions related to all disciplines of electromagnetic compatibility (EMC) and relevant methods to predict, assess and prevent electromagnetic interference (EMI) and increase device/product immunity. The scope of the publication includes, but is not limited to Electromagnetic Environments; Interference Control; EMC and EMI Modeling; High Power Electromagnetics; EMC Standards, Methods of EMC Measurements; Computational Electromagnetics and Signal and Power Integrity, as applied or directly related to Electromagnetic Compatibility problems; Transmission Lines; Electrostatic Discharge and Lightning Effects; EMC in Wireless and Optical Technologies; EMC in Printed Circuit Board and System Design.