Melvin H. Friedman, Brian L. Mark, Nathan H. Gartner
{"title":"Uninterrupted Maximum Flow on Signalized Traffic Networks","authors":"Melvin H. Friedman, Brian L. Mark, Nathan H. Gartner","doi":"10.1155/2024/4279649","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This paper describes a traffic signal control strategy that allows motorists who travel at a recommended speed on suburban arterial two-way roads with a common cycle time to make every traffic signal. A road-to-traveler-feedback-device (RTFD) advises motorists how fast they should travel to do this. Signalized arterial roads where vehicles that travel at the recommended speed make every traffic signal are termed Ride-the-Green-Wave (RGW) roads. Left-turn-arounds enable vehicles to turn left from two-way RGW roads to intersecting/orthogonal two-way RGW-road while allowing maximum flow at the intersection. The traffic signal control technique that enables vehicles that travel at the recommended speed to make every traffic signal has been verified using a simulation program (RGW-SIM). In addition to introducing novel traffic signal control strategies, the methods presented in this paper have implications for road network design, public transport control, connected and automated vehicles, and environmental impacts.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4279649","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/4279649","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes a traffic signal control strategy that allows motorists who travel at a recommended speed on suburban arterial two-way roads with a common cycle time to make every traffic signal. A road-to-traveler-feedback-device (RTFD) advises motorists how fast they should travel to do this. Signalized arterial roads where vehicles that travel at the recommended speed make every traffic signal are termed Ride-the-Green-Wave (RGW) roads. Left-turn-arounds enable vehicles to turn left from two-way RGW roads to intersecting/orthogonal two-way RGW-road while allowing maximum flow at the intersection. The traffic signal control technique that enables vehicles that travel at the recommended speed to make every traffic signal has been verified using a simulation program (RGW-SIM). In addition to introducing novel traffic signal control strategies, the methods presented in this paper have implications for road network design, public transport control, connected and automated vehicles, and environmental impacts.
期刊介绍:
The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport.
It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest.
Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.