Y. Zhao, J. F. Bell III, E. Sahr, E. Lessac-Chenen, C. Adam, E. Cisneros, A. Winhold, M. Caplinger, M. Ravine, J. Schaffner, J. Shamah, S. Mottola
{"title":"Pre-Flight and In-Flight Calibration and Performance of the Terminal Tracking Cameras (TTCams) on the NASA Lucy Mission","authors":"Y. Zhao, J. F. Bell III, E. Sahr, E. Lessac-Chenen, C. Adam, E. Cisneros, A. Winhold, M. Caplinger, M. Ravine, J. Schaffner, J. Shamah, S. Mottola","doi":"10.1029/2024EA003576","DOIUrl":null,"url":null,"abstract":"<p>The Terminal Tracking Camera (TTCam) imaging system on the NASA Lucy Discovery mission consists of a pair of cameras that are being used mainly as a navigation and target acquisition system for the mission's asteroid encounters. However, a secondary science-focused function of the TTCam system is to provide wide-angle broadband images over a large range of phase angles around close approach during each asteroid flyby. The scientific data acquired by TTCam can be used for shape modeling and topographic and geologic analyses. This paper describes the pre-flight and initial in-flight calibration and characterization of the TTCams, including the development of a radiometric calibration pipeline to convert raw TTCam images into radiance and radiance factor (I/F) images, along with their uncertainties. Details are also provided here on the specific calibration algorithms, the origin and archived location of the required ancillary calibration files, and the archived sources of the raw calibration and flight data used in this analysis.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 8","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003576","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003576","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Terminal Tracking Camera (TTCam) imaging system on the NASA Lucy Discovery mission consists of a pair of cameras that are being used mainly as a navigation and target acquisition system for the mission's asteroid encounters. However, a secondary science-focused function of the TTCam system is to provide wide-angle broadband images over a large range of phase angles around close approach during each asteroid flyby. The scientific data acquired by TTCam can be used for shape modeling and topographic and geologic analyses. This paper describes the pre-flight and initial in-flight calibration and characterization of the TTCams, including the development of a radiometric calibration pipeline to convert raw TTCam images into radiance and radiance factor (I/F) images, along with their uncertainties. Details are also provided here on the specific calibration algorithms, the origin and archived location of the required ancillary calibration files, and the archived sources of the raw calibration and flight data used in this analysis.
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.