Shi Qiu , Hanzhang Ge , Zheng Li , Zhixiang Gao , Chengbo Ai
{"title":"Network-level crash risk analysis using large-scale geometry features","authors":"Shi Qiu , Hanzhang Ge , Zheng Li , Zhixiang Gao , Chengbo Ai","doi":"10.1016/j.aap.2024.107746","DOIUrl":null,"url":null,"abstract":"<div><p>Road traffic crashes are common occurrences that create substantial losses and hazards to society. A complex interaction of components, including drivers, vehicles, roads, and the environment, can impact the causes of these crashes. Due to its complexity, crash identification, and prediction research over large-scale areas faces several obstacles, including high costs and challenging data collecting. This study offers a method for large-scale road network crash risk identification based on open-source data, given that roadways’ horizontal and vertical geometric alignment is crucial in highway traffic crashes. This methodology includes a comprehensive technique for feature extraction from horizontal curves (H-curves) and vertical curves (V-curves) and a novel way of combining the XGBoost model’s attributes with the Harris Hawks Optimization (HHO) algorithm—referred to as the HHO-XGBoost model. Using this model on the road geometry-crash risk dataset developed specifically for this study, the HHO approach adaptively identifies the optimal set of XGBoost hyperparameters and yields favorable outcomes. This study creates a three-dimensional road geometry database that may be utilized for various road infrastructure management, operation, and safety in addition to completing a tiered risk analysis of “region-road-segment” for large-scale road networks. It also offers direction on using swarm intelligence algorithms in integrated learning models.</p></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"207 ","pages":"Article 107746"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001457524002914","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Road traffic crashes are common occurrences that create substantial losses and hazards to society. A complex interaction of components, including drivers, vehicles, roads, and the environment, can impact the causes of these crashes. Due to its complexity, crash identification, and prediction research over large-scale areas faces several obstacles, including high costs and challenging data collecting. This study offers a method for large-scale road network crash risk identification based on open-source data, given that roadways’ horizontal and vertical geometric alignment is crucial in highway traffic crashes. This methodology includes a comprehensive technique for feature extraction from horizontal curves (H-curves) and vertical curves (V-curves) and a novel way of combining the XGBoost model’s attributes with the Harris Hawks Optimization (HHO) algorithm—referred to as the HHO-XGBoost model. Using this model on the road geometry-crash risk dataset developed specifically for this study, the HHO approach adaptively identifies the optimal set of XGBoost hyperparameters and yields favorable outcomes. This study creates a three-dimensional road geometry database that may be utilized for various road infrastructure management, operation, and safety in addition to completing a tiered risk analysis of “region-road-segment” for large-scale road networks. It also offers direction on using swarm intelligence algorithms in integrated learning models.
期刊介绍:
Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.