{"title":"Reduced plasma interleukin-6 concentration after transcranial direct current stimulation to the prefrontal cortex","authors":"","doi":"10.1016/j.bbr.2024.115201","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Transcranial direct stimulation (tDCS) targeted to the dorsolateral prefrontal cortex (DLPFC) reduces food intake and hunger, but its effects on circulating factors are unclear. We assessed the effect of repeated administration of tDCS to the left DLPFC (L-DLPFC) on concentrations of pro/anti-inflammatory and appetitive hormone concentrations.</p></div><div><h3>Materials and methods</h3><p>Twenty-nine healthy adults with obesity (12 M; 42±11 y; BMI=39±8 kg/m<sup>2</sup>) received 3 consecutive inpatient sessions of either anodal or sham tDCS targeted to the L-DLPFC during a period of ad libitum food intake. Fasting plasma concentrations of IL-6, orexin, cortisol, TNF-α, IL-1β, ghrelin, PYY, and GLP-1 were measured before the initial and after the final tDCS sessions.</p></div><div><h3>Results</h3><p>IL-6 (β=-0.92 pg/ml p=0.03) decreased in the anodal group compared with sham, even after adjusting for kcal intake; there were no changes in other hormones. Mean kcal intake was associated with higher IL-1β and ghrelin concentrations after the ad libitum period (β=0.00018 pg/ml/kcal, p=0.03; β=0.00011 pg/ml/kcal, p=0.02; respectively), but not differ by intervention groups.</p></div><div><h3>Conclusions</h3><p>IL-6 concentrations were reduced following anodal tDCS to the L-DLPFC independent of ad libitum intake. IL-6 concentrations reflect the inflammatory state of adiposity and may affect eating behavior and weight gain. These findings provide evidence of therapeutic benefit of tDCS.</p></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432824003577","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Transcranial direct stimulation (tDCS) targeted to the dorsolateral prefrontal cortex (DLPFC) reduces food intake and hunger, but its effects on circulating factors are unclear. We assessed the effect of repeated administration of tDCS to the left DLPFC (L-DLPFC) on concentrations of pro/anti-inflammatory and appetitive hormone concentrations.
Materials and methods
Twenty-nine healthy adults with obesity (12 M; 42±11 y; BMI=39±8 kg/m2) received 3 consecutive inpatient sessions of either anodal or sham tDCS targeted to the L-DLPFC during a period of ad libitum food intake. Fasting plasma concentrations of IL-6, orexin, cortisol, TNF-α, IL-1β, ghrelin, PYY, and GLP-1 were measured before the initial and after the final tDCS sessions.
Results
IL-6 (β=-0.92 pg/ml p=0.03) decreased in the anodal group compared with sham, even after adjusting for kcal intake; there were no changes in other hormones. Mean kcal intake was associated with higher IL-1β and ghrelin concentrations after the ad libitum period (β=0.00018 pg/ml/kcal, p=0.03; β=0.00011 pg/ml/kcal, p=0.02; respectively), but not differ by intervention groups.
Conclusions
IL-6 concentrations were reduced following anodal tDCS to the L-DLPFC independent of ad libitum intake. IL-6 concentrations reflect the inflammatory state of adiposity and may affect eating behavior and weight gain. These findings provide evidence of therapeutic benefit of tDCS.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.