A note on the 1-factorization of non-uniform complete hypergraph

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Taijiang Jiang , Qiang Sun , Chao Zhang
{"title":"A note on the 1-factorization of non-uniform complete hypergraph","authors":"Taijiang Jiang ,&nbsp;Qiang Sun ,&nbsp;Chao Zhang","doi":"10.1016/j.amc.2024.129007","DOIUrl":null,"url":null,"abstract":"<div><p>Given <span><math><mi>G</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></math></span> with <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>N</mi></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>t</mi></math></span>, let <span><math><mi>G</mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>≤</mo><mi>t</mi></mrow></msubsup></math></span> denote the non-uniform complete hypergraph on <em>s</em> vertices, whose edge set contains <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> copies of every <em>i</em>-subset of vertex set for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>t</mi></math></span>. Let <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>≤</mo><mi>t</mi></mrow></msubsup></math></span> denote <span><math><mi>G</mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>≤</mo><mi>t</mi></mrow></msubsup></math></span> for <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>1</mn></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>t</mi></math></span>. Recently, He et al. determined all <span><math><mi>s</mi><mo>,</mo><mi>t</mi></math></span> such that <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>≤</mo><mi>t</mi></mrow></msubsup></math></span> has a 1-factorization. In this manuscript, we consider the 1-factorization of <span><math><mi>G</mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>≤</mo><mi>t</mi></mrow></msubsup></math></span> and obtain the following results. (1) If <span><math><mn>2</mn><msub><mrow><mi>g</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>≥</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>t</mi><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>s</mi><mo>≡</mo><mn>0</mn><mspace></mspace><mo>(</mo><mi>m</mi><mi>o</mi><mi>d</mi><mspace></mspace><mi>t</mi><mo>)</mo></math></span>, then <span><math><mi>G</mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>≤</mo><mi>t</mi></mrow></msubsup></math></span> has a 1-factorization for sufficiently large <em>s</em>. (2) If <span><math><mi>G</mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>≤</mo><mi>t</mi></mrow></msubsup></math></span> has a 1-factorization for sufficiently large <em>s</em>, then <span><math><mi>s</mi><mo>≡</mo><mn>0</mn><mo>,</mo><mo>−</mo><mn>1</mn><mspace></mspace><mo>(</mo><mi>m</mi><mi>o</mi><mi>d</mi><mspace></mspace><mi>t</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324004685","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Given G=(g1,,gt) with giN for 1it, let GKst denote the non-uniform complete hypergraph on s vertices, whose edge set contains gi copies of every i-subset of vertex set for 1it. Let Kst denote GKst for gi=1 for 1it. Recently, He et al. determined all s,t such that Kst has a 1-factorization. In this manuscript, we consider the 1-factorization of GKst and obtain the following results. (1) If 2gtgj for 1jt1 and s0(modt), then GKst has a 1-factorization for sufficiently large s. (2) If GKst has a 1-factorization for sufficiently large s, then s0,1(modt).

关于非均匀完全超图的 1 因子化的说明
给定 G=(g1,⋯,gt),其中 gi∈N 为 1≤i≤t,让 GKs≤t 表示 s 个顶点上的非均匀完整超图,其边集包含 1≤i≤t 的顶点集的每个 i 子集的 gi 副本。让 Ks≤t 表示 1≤i≤t 时 gi=1 的 GKs≤t。最近,He 等人确定了所有 s,t,使得 Ks≤t 具有 1 因子化。在本手稿中,我们考虑了 GKs≤t 的 1 因式分解,并得到以下结果。(1) 若 2gt≥gj 为 1≤j≤t-1 且 s≡0(modt),则 GKs≤t 对于足够大的 s 具有 1 因式分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信