{"title":"A note on the 1-factorization of non-uniform complete hypergraph","authors":"Taijiang Jiang , Qiang Sun , Chao Zhang","doi":"10.1016/j.amc.2024.129007","DOIUrl":null,"url":null,"abstract":"<div><p>Given <span><math><mi>G</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></math></span> with <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>N</mi></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>t</mi></math></span>, let <span><math><mi>G</mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>≤</mo><mi>t</mi></mrow></msubsup></math></span> denote the non-uniform complete hypergraph on <em>s</em> vertices, whose edge set contains <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> copies of every <em>i</em>-subset of vertex set for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>t</mi></math></span>. Let <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>≤</mo><mi>t</mi></mrow></msubsup></math></span> denote <span><math><mi>G</mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>≤</mo><mi>t</mi></mrow></msubsup></math></span> for <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>1</mn></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>t</mi></math></span>. Recently, He et al. determined all <span><math><mi>s</mi><mo>,</mo><mi>t</mi></math></span> such that <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>≤</mo><mi>t</mi></mrow></msubsup></math></span> has a 1-factorization. In this manuscript, we consider the 1-factorization of <span><math><mi>G</mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>≤</mo><mi>t</mi></mrow></msubsup></math></span> and obtain the following results. (1) If <span><math><mn>2</mn><msub><mrow><mi>g</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>≥</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>t</mi><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>s</mi><mo>≡</mo><mn>0</mn><mspace></mspace><mo>(</mo><mi>m</mi><mi>o</mi><mi>d</mi><mspace></mspace><mi>t</mi><mo>)</mo></math></span>, then <span><math><mi>G</mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>≤</mo><mi>t</mi></mrow></msubsup></math></span> has a 1-factorization for sufficiently large <em>s</em>. (2) If <span><math><mi>G</mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>≤</mo><mi>t</mi></mrow></msubsup></math></span> has a 1-factorization for sufficiently large <em>s</em>, then <span><math><mi>s</mi><mo>≡</mo><mn>0</mn><mo>,</mo><mo>−</mo><mn>1</mn><mspace></mspace><mo>(</mo><mi>m</mi><mi>o</mi><mi>d</mi><mspace></mspace><mi>t</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324004685","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Given with for , let denote the non-uniform complete hypergraph on s vertices, whose edge set contains copies of every i-subset of vertex set for . Let denote for for . Recently, He et al. determined all such that has a 1-factorization. In this manuscript, we consider the 1-factorization of and obtain the following results. (1) If for and , then has a 1-factorization for sufficiently large s. (2) If has a 1-factorization for sufficiently large s, then .