Design of alkali metal oxide adsorbent for direct air capture: Identification of physicochemical adsorption and analysis of regeneration mechanism

Lecan Huang , Jinchen Ma , Fan Wang , Guorong Xu , Haibo Zhao
{"title":"Design of alkali metal oxide adsorbent for direct air capture: Identification of physicochemical adsorption and analysis of regeneration mechanism","authors":"Lecan Huang ,&nbsp;Jinchen Ma ,&nbsp;Fan Wang ,&nbsp;Guorong Xu ,&nbsp;Haibo Zhao","doi":"10.1016/j.ccst.2024.100268","DOIUrl":null,"url":null,"abstract":"<div><p>Direct air capture (DAC) represents an advanced negative carbon emission technology, with the key being high-performance CO<sub>2</sub> adsorbents. First, this work carefully identifies CO<sub>2</sub> physisorption and chemisorption by CaO/HcATP (CaO loaded on acid-modified attapulgite) as DAC adsorbent. The chemisorption of amorphous \"CaO\" plays a crucial role in both the adsorption capacity and rate, with contributions of 66.8 % and 50.85 %, respectively. The adsorption capacity of CaO/HcATP is only 212.4 ± 25.7 µmol/g via the simple CO<sub>2</sub> physisorption and improved by 426.7 µmol/g owning to the chemisorption of amorphous CaO. Second, the concentration of silanol groups on CaO/HcATP plays a pivotal role in the adsorption process. The concentration of silanol groups decreases to 3.85 OH/nm<sup>2</sup> after undergoing 30 cycles of adsorption-desorption. Then it increases to 9.54 OH/nm<sup>2</sup> by adsorbing the moisture in the air, resulting in a recovered adsorption capacity of 90.7 %. Furthermore, the pseudo-first-order adsorption kinetics model effectively predicted the experimental results. Finally, the dual loop of CO<sub>2</sub> capture and regeneration is summarized using the CaO/HcATP as DAC adsorbent. The amorphous \"CaO\" interacts with the surface silanol of HcATP, synergistically capturing CO<sub>2</sub> in the form of \"CaO···CO<sub>2</sub>\", which reduces desorption energy consumption. The wetting property of HcATP contributes to the regeneration of CaO/HcATP. This work contributes to establishing fundamental principles for designing cost-effective DAC adsorbents.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000800/pdfft?md5=a2a7fb403b63125fc7ec7aba6cc112e4&pid=1-s2.0-S2772656824000800-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824000800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Direct air capture (DAC) represents an advanced negative carbon emission technology, with the key being high-performance CO2 adsorbents. First, this work carefully identifies CO2 physisorption and chemisorption by CaO/HcATP (CaO loaded on acid-modified attapulgite) as DAC adsorbent. The chemisorption of amorphous "CaO" plays a crucial role in both the adsorption capacity and rate, with contributions of 66.8 % and 50.85 %, respectively. The adsorption capacity of CaO/HcATP is only 212.4 ± 25.7 µmol/g via the simple CO2 physisorption and improved by 426.7 µmol/g owning to the chemisorption of amorphous CaO. Second, the concentration of silanol groups on CaO/HcATP plays a pivotal role in the adsorption process. The concentration of silanol groups decreases to 3.85 OH/nm2 after undergoing 30 cycles of adsorption-desorption. Then it increases to 9.54 OH/nm2 by adsorbing the moisture in the air, resulting in a recovered adsorption capacity of 90.7 %. Furthermore, the pseudo-first-order adsorption kinetics model effectively predicted the experimental results. Finally, the dual loop of CO2 capture and regeneration is summarized using the CaO/HcATP as DAC adsorbent. The amorphous "CaO" interacts with the surface silanol of HcATP, synergistically capturing CO2 in the form of "CaO···CO2", which reduces desorption energy consumption. The wetting property of HcATP contributes to the regeneration of CaO/HcATP. This work contributes to establishing fundamental principles for designing cost-effective DAC adsorbents.

设计用于直接捕获空气的碱金属氧化物吸附剂:理化吸附鉴定和再生机制分析
直接空气捕集(DAC)是一种先进的负碳排放技术,其关键在于高性能的二氧化碳吸附剂。首先,这项工作仔细研究了作为 DAC 吸附剂的 CaO/HcATP(酸改性阿塔蓬石上的 CaO)对二氧化碳的物理吸附和化学吸附。无定形 "CaO "的化学吸附对吸附容量和吸附速率都起着至关重要的作用,其贡献率分别为 66.8 % 和 50.85 %。通过简单的二氧化碳物理吸附,CaO/HcATP 的吸附容量仅为 212.4 ± 25.7 µmol/g,而通过无定形 CaO 的化学吸附,吸附容量提高了 426.7 µmol/g。其次,CaO/HcATP 上硅醇基团的浓度在吸附过程中起着关键作用。经过 30 次吸附-解吸循环后,硅醇基团的浓度降至 3.85 OH/nm2。然后,通过吸附空气中的水分,硅烷醇基团的浓度增加到 9.54 OH/nm2,从而使吸附容量恢复到 90.7%。此外,伪一阶吸附动力学模型有效地预测了实验结果。最后,以 CaO/HcATP 作为 DAC 吸附剂,总结了二氧化碳捕获和再生的双循环。无定形的 "CaO "与 HcATP 表面的硅烷醇相互作用,以 "CaO---CO2 "的形式协同捕获二氧化碳,从而降低了解吸能耗。HcATP 的润湿特性有助于 CaO/HcATP 的再生。这项工作有助于为设计具有成本效益的 DAC 吸附剂确立基本原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信