The effect of forming surface interference on Thin-Walled profiles during the discontinuous forming process with discrete molds

IF 3.4 3区 工程技术 Q1 MECHANICS
Songyue Yang, Yi Li, Yu Wen, Jicai Liang, Ce Liang
{"title":"The effect of forming surface interference on Thin-Walled profiles during the discontinuous forming process with discrete molds","authors":"Songyue Yang,&nbsp;Yi Li,&nbsp;Yu Wen,&nbsp;Jicai Liang,&nbsp;Ce Liang","doi":"10.1016/j.ijsolstr.2024.113022","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to investigate the influence of the roller dies’ characteristics of shapes on the forming results in the roller-based flexible multi-point three-dimensional stretch bending forming (FSBRD) process for thin-walled profiles, as well as the prediction of mold-induced impressions during the FSBRD process. Considering the specific contact mode, an L-shaped section profile’s flange was selected as the research object to analyze the impact of the roller dies’ slot’s geometric parameters on the product. A classification model of the contact between the profile’s flange and the roller die was established for the vertical bending process, and the maximum theoretical interference value (<em>i<sub>max</sub></em>) was calculated to predict the extent of local deformation after contact. Subsequently, finite element software was used to model the process and analyze the changes in equivalent plastic strain (PEEQ) of the deformation results when using roller dies with slots of different parameters, including straight, inclined, and arc-shaped slots. The analysis results indicate that the width of the straight slot has a significant influence on the forming quality of the product, as a smaller slot width leads to larger local dimples on the product surface. Replacing the straight slot with an inclined or arc-shaped slot improves the abrupt changes in local PEEQ, resulting in reduced macroscopic local dimples. The simulation results align with the analytical model’s variation of <em>i<sub>max</sub></em>. This study defined the theoretical contact angle γ and introduced the concept of the contact area and the local theoretical interference zone, providing a reasonable explanation for the observed PEEQ variations. Furthermore, based on the conclusions of the research above, modified experiments were designed, resulting in favorable forming effects. The validation of the simulation results was performed by comparing the local dimples in the contact zone of the actual experimental results.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"303 ","pages":"Article 113022"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324003810","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to investigate the influence of the roller dies’ characteristics of shapes on the forming results in the roller-based flexible multi-point three-dimensional stretch bending forming (FSBRD) process for thin-walled profiles, as well as the prediction of mold-induced impressions during the FSBRD process. Considering the specific contact mode, an L-shaped section profile’s flange was selected as the research object to analyze the impact of the roller dies’ slot’s geometric parameters on the product. A classification model of the contact between the profile’s flange and the roller die was established for the vertical bending process, and the maximum theoretical interference value (imax) was calculated to predict the extent of local deformation after contact. Subsequently, finite element software was used to model the process and analyze the changes in equivalent plastic strain (PEEQ) of the deformation results when using roller dies with slots of different parameters, including straight, inclined, and arc-shaped slots. The analysis results indicate that the width of the straight slot has a significant influence on the forming quality of the product, as a smaller slot width leads to larger local dimples on the product surface. Replacing the straight slot with an inclined or arc-shaped slot improves the abrupt changes in local PEEQ, resulting in reduced macroscopic local dimples. The simulation results align with the analytical model’s variation of imax. This study defined the theoretical contact angle γ and introduced the concept of the contact area and the local theoretical interference zone, providing a reasonable explanation for the observed PEEQ variations. Furthermore, based on the conclusions of the research above, modified experiments were designed, resulting in favorable forming effects. The validation of the simulation results was performed by comparing the local dimples in the contact zone of the actual experimental results.

Abstract Image

在使用离散模具的不连续成型过程中,成型面干涉对薄壁型材的影响
本研究旨在探讨薄壁型材的辊式柔性多点三维拉伸弯曲成形(FSBRD)工艺中,辊模的形状特征对成形结果的影响,以及在 FSBRD 工艺中模具引起的压痕的预测。考虑到特定的接触模式,研究人员选择了一个 L 形断面型材的凸缘作为研究对象,分析辊模槽的几何参数对产品的影响。针对垂直弯曲过程,建立了型材凸缘与辊模接触的分类模型,并计算了最大理论干涉值(imax),以预测接触后的局部变形程度。随后,使用有限元软件对这一过程进行建模,并分析了使用带有不同参数槽(包括直槽、斜槽和弧形槽)的辊模时变形结果的等效塑性应变(PEEQ)变化。分析结果表明,直槽的宽度对产品的成型质量有很大影响,因为槽宽越小,产品表面的局部凹痕就越大。用斜槽或弧形槽代替直槽可以改善局部 PEEQ 的突然变化,从而减少宏观局部凹痕。模拟结果与分析模型的 imax 变化一致。这项研究定义了理论接触角 γ 并引入了接触面积和局部理论干涉区的概念,为观察到的 PEEQ 变化提供了合理的解释。此外,根据上述研究结论,设计了修改后的实验,从而获得了良好的成型效果。通过比较实际实验结果中接触区的局部凹痕,对模拟结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
8.30%
发文量
405
审稿时长
70 days
期刊介绍: The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信