Andries MTHISI, Abimbola Patricia Idowu POPOOLA, Lehlogonolo Rudolf KANYANE, Sadiq Abiola RAJI, Nicholus MALATJI
{"title":"The possibility of using laser surface engineered titanium alloy implants as a treatment for cardiovascular diseases","authors":"Andries MTHISI, Abimbola Patricia Idowu POPOOLA, Lehlogonolo Rudolf KANYANE, Sadiq Abiola RAJI, Nicholus MALATJI","doi":"10.1016/j.bea.2024.100131","DOIUrl":null,"url":null,"abstract":"<div><p>Cardiovascular disorders primarily harm and shorten the lives of countless individuals worldwide. Even while surgical heart transplants and other medical procedures can help people with cardiovascular disease live longer, finding the right donor and the expense of therapy are obstacles that force patients to look for less intrusive and less expensive therapies. The use of synthetic biomaterials, such as titanium-based implants, offers an alternate path with the potential to heal and regenerate the heart. However, in most biomedical cases titanium-based implants are accompanied by surface related limitations which deter them from fulfilling their potential. Over the years, surface related shortfalls are usually addressed by fabrication of coatings exhibiting better properties using different sorts of surface modification techniques. These techniques include physical vapor depositions, plasma spraying, sol-gel and laser cladding etc. However, the exploration of employing lasers to alter the surface of cardiac based implants remains a subject that needs further research. In this work, the developments of functional coatings exhibiting good corrosion resistance and better biocompatibility are reviewed with the aim to deduce the possibility of applying such coatings on titanium based cardiovascular implants thereby alleviating burdens of this disease.</p></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"8 ","pages":"Article 100131"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667099224000203/pdfft?md5=0355304e9c2770f58161a345323b3053&pid=1-s2.0-S2667099224000203-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical engineering advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667099224000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular disorders primarily harm and shorten the lives of countless individuals worldwide. Even while surgical heart transplants and other medical procedures can help people with cardiovascular disease live longer, finding the right donor and the expense of therapy are obstacles that force patients to look for less intrusive and less expensive therapies. The use of synthetic biomaterials, such as titanium-based implants, offers an alternate path with the potential to heal and regenerate the heart. However, in most biomedical cases titanium-based implants are accompanied by surface related limitations which deter them from fulfilling their potential. Over the years, surface related shortfalls are usually addressed by fabrication of coatings exhibiting better properties using different sorts of surface modification techniques. These techniques include physical vapor depositions, plasma spraying, sol-gel and laser cladding etc. However, the exploration of employing lasers to alter the surface of cardiac based implants remains a subject that needs further research. In this work, the developments of functional coatings exhibiting good corrosion resistance and better biocompatibility are reviewed with the aim to deduce the possibility of applying such coatings on titanium based cardiovascular implants thereby alleviating burdens of this disease.