Comparative analysis of water-use strategies in three subtropical mangrove species: a study of sap flow and gas exchange monitoring.

IF 3.5 2区 农林科学 Q1 FORESTRY
Sipan Wu, Xiaoxuan Gu, Xiufan Peng, Luzhen Chen
{"title":"Comparative analysis of water-use strategies in three subtropical mangrove species: a study of sap flow and gas exchange monitoring.","authors":"Sipan Wu, Xiaoxuan Gu, Xiufan Peng, Luzhen Chen","doi":"10.1093/treephys/tpae102","DOIUrl":null,"url":null,"abstract":"<p><p>Water-use strategies play a crucial role in the adaptive capabilities of mangroves to the saline intertidal conditions, yet the intricacies of daily water-use patterns in mangrove species, which are pivotal for maintaining water balance, remain poorly understood. In this comprehensive study, we aimed to clarify the water use strategies of three co-occurring mangrove species, Avicennia marina, Aegiceras corniculatum and Kandelia obovata, through stem sap flow monitoring, leaf gas exchange and stem diameter change measurements. Our findings revealed that the daily sap flow density of Avicennia and Aegiceras reached the peak about 1 h earlier than that of Kandelia. When transpiration was strong, Kandelia and Aegiceras used stem storage to meet water demand, while Avicennia synchronized stem water storage. These three mangrove species adopted cross-peak water used and unique stem water storage to regulate their water balance. In Kandelia, the daily sap flow in per sapwood area was significantly lower, while water-use efficiency was significantly higher than those of Avicennia and Aegiceras, indicating that Kandelia adopted a more conservative and efficient water-use strategy. Sap flow in Avicennia was the most sensitive to environmental changes, while Kandelia limited water dissipation by tightly controlling stomata. Meteorological factors (photosynthetically active radiation, vapor pressure deficit and air temperature) were the main driving factors of sap flow. The increase of soil temperature can promote the water use of mangrove species, while the increase of salinity resulted in more conservative water use. Our results highlight the diversity of daily water-use strategies among the three co-occurring mangrove species, pinpointing Kandelia as the most adaptive at navigating the changing conditions of intertidal habitats in the future climate. In conclusion, our findings provide a mesoscale perspective on water-use characteristics of mangroves and also provides theoretical basis for mangroves afforestation and ecological restoration.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpae102","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Water-use strategies play a crucial role in the adaptive capabilities of mangroves to the saline intertidal conditions, yet the intricacies of daily water-use patterns in mangrove species, which are pivotal for maintaining water balance, remain poorly understood. In this comprehensive study, we aimed to clarify the water use strategies of three co-occurring mangrove species, Avicennia marina, Aegiceras corniculatum and Kandelia obovata, through stem sap flow monitoring, leaf gas exchange and stem diameter change measurements. Our findings revealed that the daily sap flow density of Avicennia and Aegiceras reached the peak about 1 h earlier than that of Kandelia. When transpiration was strong, Kandelia and Aegiceras used stem storage to meet water demand, while Avicennia synchronized stem water storage. These three mangrove species adopted cross-peak water used and unique stem water storage to regulate their water balance. In Kandelia, the daily sap flow in per sapwood area was significantly lower, while water-use efficiency was significantly higher than those of Avicennia and Aegiceras, indicating that Kandelia adopted a more conservative and efficient water-use strategy. Sap flow in Avicennia was the most sensitive to environmental changes, while Kandelia limited water dissipation by tightly controlling stomata. Meteorological factors (photosynthetically active radiation, vapor pressure deficit and air temperature) were the main driving factors of sap flow. The increase of soil temperature can promote the water use of mangrove species, while the increase of salinity resulted in more conservative water use. Our results highlight the diversity of daily water-use strategies among the three co-occurring mangrove species, pinpointing Kandelia as the most adaptive at navigating the changing conditions of intertidal habitats in the future climate. In conclusion, our findings provide a mesoscale perspective on water-use characteristics of mangroves and also provides theoretical basis for mangroves afforestation and ecological restoration.

三种亚热带红树林物种用水策略的比较分析:树液流动和气体交换监测研究。
水利用策略对红树林适应潮间带盐碱环境的能力起着至关重要的作用,但人们对红树林物种日常水利用模式的复杂性仍知之甚少,而这种模式对维持水分平衡至关重要。在这项综合研究中,我们旨在通过茎液流监测、叶片气体交换和茎直径变化测量,阐明三种共生红树林物种(Avicennia marina、Aegiceras corniculatum和Kandelia obovata)的水分利用策略。我们的研究结果表明,Avicennia 和 Aegiceras 的日液流密度(SFD)比 Kandelia 早约一小时达到峰值。当蒸腾作用强烈时,Kandelia 和 Aegiceras 利用茎干储水来满足水分需求,而 Avicennia 则同步进行茎干储水。这三个红树林物种采用交叉峰值用水和独特的茎干蓄水来调节水分平衡。与 Avicennia 和 Aegiceras 相比,Kandelia 的单位边材面积日树液流量明显较低,而用水效率则明显较高,这表明 Kandelia 采用了更为保守和高效的用水策略。Avicennia的树液流动对环境变化最为敏感,而Kandelia则通过严格控制气孔来限制水分散失。气象因素(光合有效辐射、蒸气压差和气温)是汁液流动的主要驱动因素。土壤温度的升高可促进红树林物种的水分利用,而盐度的升高则导致更保守的水分利用。我们的研究结果突显了三种共生红树林物种日常用水策略的多样性,并指出 Kandelia 是在未来气候条件下最能适应潮间带生境变化的物种。总之,我们的研究结果从中尺度的角度揭示了红树林的用水特征,也为红树林造林和生态恢复提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tree physiology
Tree physiology 农林科学-林学
CiteScore
7.10
自引率
7.50%
发文量
133
审稿时长
1 months
期刊介绍: Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信