Promoting Electroreduction of CO2 and NO3− to Urea via Tandem Catalysis of Zn Single Atoms and In2O3-x

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ying Zhang, Zhuohang Li, Kai Chen, Xing Yang, Hu Zhang, Xijun Liu, Ke Chu
{"title":"Promoting Electroreduction of CO2 and NO3− to Urea via Tandem Catalysis of Zn Single Atoms and In2O3-x","authors":"Ying Zhang, Zhuohang Li, Kai Chen, Xing Yang, Hu Zhang, Xijun Liu, Ke Chu","doi":"10.1002/aenm.202402309","DOIUrl":null,"url":null,"abstract":"Urea electrosynthesis from co-electrolysis of CO<sub>2</sub> and NO<sub>3</sub><sup>−</sup> (UECN) offers an innovative route for converting waste CO<sub>2</sub>/NO<sub>3</sub><sup>−</sup> into valuable urea. Herein, Zn single atoms anchored on oxygen vacancy (OV)-rich In<sub>2</sub>O<sub>3-x</sub> (Zn<sub>1</sub>/In<sub>2</sub>O<sub>3-x</sub>) are developed as a highly active and selective UECN catalyst, delivering the highest urea yield rate of 41.6 mmol h<sup>−1</sup> g<sup>−1</sup> and urea-Faradaic efficiency of 55.8% at −0.7 V in flow cell, superior to most previously reported UECN catalysts. In situ spectroscopic measurements and theoretical calculations unveil the synergy of In/Zn<sub>1</sub> sites and OVs in promoting the UECN process via a tandem catalysis mechanism, where Zn<sub>1</sub>-OV site activates NO<sub>3</sub><sup>−</sup> to form <sup>*</sup>NH<sub>2</sub> while In-OV site activates CO<sub>2</sub> to form <sup>*</sup>CO. The formed <sup>*</sup>CO spontaneously migrates from the In-OV site to the nearby Zn<sub>1</sub>-OV site and then couples with <sup>*</sup>NH<sub>2</sub> to generate <sup>*</sup>CONH<sub>2</sub> which is ultimately converted into urea.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202402309","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Urea electrosynthesis from co-electrolysis of CO2 and NO3 (UECN) offers an innovative route for converting waste CO2/NO3 into valuable urea. Herein, Zn single atoms anchored on oxygen vacancy (OV)-rich In2O3-x (Zn1/In2O3-x) are developed as a highly active and selective UECN catalyst, delivering the highest urea yield rate of 41.6 mmol h−1 g−1 and urea-Faradaic efficiency of 55.8% at −0.7 V in flow cell, superior to most previously reported UECN catalysts. In situ spectroscopic measurements and theoretical calculations unveil the synergy of In/Zn1 sites and OVs in promoting the UECN process via a tandem catalysis mechanism, where Zn1-OV site activates NO3 to form *NH2 while In-OV site activates CO2 to form *CO. The formed *CO spontaneously migrates from the In-OV site to the nearby Zn1-OV site and then couples with *NH2 to generate *CONH2 which is ultimately converted into urea.

Abstract Image

通过 Zn 单原子和 In2O3-x 的串联催化促进 CO2 和 NO3- 电还原为尿素
二氧化碳和三氧化二氮共电解尿素电合成(UECN)为将废弃的二氧化碳/三氧化二氮转化为有价值的尿素提供了一条创新途径。在这里,锚定在富氧空位(OV)In2O3-x(Zn1/In2O3-x)上的 Zn 单原子被开发成一种高活性、高选择性的 UECN 催化剂,在流动池中-0.7 V 的电压下,尿素产率最高达 41.6 mmol h-1 g-1,尿素-法拉第效率为 55.8%,优于之前报道的大多数 UECN 催化剂。原位光谱测量和理论计算揭示了 In/Zn1 位点和 OV 在通过串联催化机制促进 UECN 过程中的协同作用,其中 Zn1-OV 位点激活 NO3- 生成 *NH2,而 In-OV 位点激活 CO2 生成 *CO。形成的 *CO 自发地从 In-OV 位点迁移到附近的 Zn1-OV 位点,然后与 *NH2 结合生成 *CONH2,最终转化为尿素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信