Geometric Approaches to Lagrangian Averaging

IF 25.4 1区 工程技术 Q1 MECHANICS
Andrew D. Gilbert, Jacques Vanneste
{"title":"Geometric Approaches to Lagrangian Averaging","authors":"Andrew D. Gilbert, Jacques Vanneste","doi":"10.1146/annurev-fluid-030524-095913","DOIUrl":null,"url":null,"abstract":"Lagrangian averaging theories, most notably the generalized Lagrangian mean (GLM) theory of Andrews and McIntyre, have been primarily developed in Euclidean space and Cartesian coordinates. We reinterpret these theories using a geometric, coordinate-free formulation. This gives central roles to the flow map, its decomposition into mean and perturbation maps, and the momentum 1-form dual to the velocity vector. In this interpretation, the Lagrangian mean of any tensorial quantity is obtained by averaging its pull-back to the mean configuration. Crucially, the mean velocity is not a Lagrangian mean in this sense. It can be defined in a variety of ways, leading to alternative Lagrangian mean formulations that include GLM and Soward and Roberts's volume-preserving version. These formulations share key features that the geometric approach uncovers. We derive governing equations both for the mean flow and for wave activities constraining the dynamics of the perturbations. The presentation focuses on the Boussinesq model for inviscid rotating stratified flows and reviews the necessary tools of differential geometry.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":25.4000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-030524-095913","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Lagrangian averaging theories, most notably the generalized Lagrangian mean (GLM) theory of Andrews and McIntyre, have been primarily developed in Euclidean space and Cartesian coordinates. We reinterpret these theories using a geometric, coordinate-free formulation. This gives central roles to the flow map, its decomposition into mean and perturbation maps, and the momentum 1-form dual to the velocity vector. In this interpretation, the Lagrangian mean of any tensorial quantity is obtained by averaging its pull-back to the mean configuration. Crucially, the mean velocity is not a Lagrangian mean in this sense. It can be defined in a variety of ways, leading to alternative Lagrangian mean formulations that include GLM and Soward and Roberts's volume-preserving version. These formulations share key features that the geometric approach uncovers. We derive governing equations both for the mean flow and for wave activities constraining the dynamics of the perturbations. The presentation focuses on the Boussinesq model for inviscid rotating stratified flows and reviews the necessary tools of differential geometry.
拉格朗日平均法的几何方法
拉格朗日平均理论,尤其是安德鲁斯和麦金太尔的广义拉格朗日平均(GLM)理论,主要是在欧几里得空间和笛卡尔坐标下发展起来的。我们使用无坐标的几何表述来重新诠释这些理论。这就赋予了流动图、其分解为均值图和扰动图以及与速度矢量对偶的动量 1-form 的核心作用。在这种解释中,任何张量的拉格朗日均值都是通过平均其拉回均值构型得到的。重要的是,平均速度并不是这种意义上的拉格朗日平均值。拉格朗日均值有多种定义方法,可供选择的拉格朗日均值公式包括 GLM 以及索沃德和罗伯茨的体积保留版本。这些公式都具有几何方法所揭示的关键特征。我们推导出了平均流和波浪活动的调控方程,对扰动的动力学特性进行了约束。报告重点介绍了不粘性旋转分层流的布森斯克模型,并回顾了微分几何的必要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
54.00
自引率
0.40%
发文量
43
期刊介绍: The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions. Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license. This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信