Samar Layek, Eran Greenberg, Davide Levy, Vitali Prakapenka, Siddharth S. Saxena, Gregory Kh. Rozenberg
{"title":"Correlated electron physics near a site-selective pressure-induced Mott transition in α-LiFe5O8","authors":"Samar Layek, Eran Greenberg, Davide Levy, Vitali Prakapenka, Siddharth S. Saxena, Gregory Kh. Rozenberg","doi":"10.1038/s43246-024-00560-x","DOIUrl":null,"url":null,"abstract":"The Mott insulator-to-metal transition (IMT) driven by electron correlations has been among the main research topics in materials science over the past decades. The complex interplay between electronic and lattice degrees of freedom leads to various transition scenarios. Of particular interest may be the case of a transition involving the formation of complex phases comprising regions that differ significantly in their physical properties within the same material. Here, we present the results that advance the understanding of the IMT phenomenon, offering the documentation of a pure site-selective mechanism that is not complicated by any structural and spin transformation. Combining XRD, resistivity, Mössbauer and Raman spectroscopy measurements, we provide evidence for a pure pressure-induced Mott transition in α-LiFe5O8, characterized by site-selective delocalization of electrons, leading to the formation, above ~65 GPa, of a site-selective Mott phase consisting of metallic and insulating sublattices. We note that the electron delocalization in the partially disordered octahedral sublattice cannot be understood purely in terms of a Mott transition, the Anderson-Mott transition picture seems more adequate. The Mott insulator-to-metal transition occurs via multiple mechanisms in different materials. Here, such a pressure-induced transition in α-LiFe5O8 is found to occur via site-selective delocalization of electrons, leading to the formation of metallic and insulating sublattices.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00560-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00560-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Mott insulator-to-metal transition (IMT) driven by electron correlations has been among the main research topics in materials science over the past decades. The complex interplay between electronic and lattice degrees of freedom leads to various transition scenarios. Of particular interest may be the case of a transition involving the formation of complex phases comprising regions that differ significantly in their physical properties within the same material. Here, we present the results that advance the understanding of the IMT phenomenon, offering the documentation of a pure site-selective mechanism that is not complicated by any structural and spin transformation. Combining XRD, resistivity, Mössbauer and Raman spectroscopy measurements, we provide evidence for a pure pressure-induced Mott transition in α-LiFe5O8, characterized by site-selective delocalization of electrons, leading to the formation, above ~65 GPa, of a site-selective Mott phase consisting of metallic and insulating sublattices. We note that the electron delocalization in the partially disordered octahedral sublattice cannot be understood purely in terms of a Mott transition, the Anderson-Mott transition picture seems more adequate. The Mott insulator-to-metal transition occurs via multiple mechanisms in different materials. Here, such a pressure-induced transition in α-LiFe5O8 is found to occur via site-selective delocalization of electrons, leading to the formation of metallic and insulating sublattices.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.