Enhanced oxidative desulfurization of dibenzothiophene under visible light using carbon quantum dot-decorated novel Z-scheme BiVO4/MOF-808/CN photocatalyst: Mechanism, performance and stability

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Manh B. Nguyen , Huan V. Doan
{"title":"Enhanced oxidative desulfurization of dibenzothiophene under visible light using carbon quantum dot-decorated novel Z-scheme BiVO4/MOF-808/CN photocatalyst: Mechanism, performance and stability","authors":"Manh B. Nguyen ,&nbsp;Huan V. Doan","doi":"10.1016/j.jtice.2024.105691","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Photocatalytic oxidative desulfurization technology enabling the facile oxidation of these compounds to sulfones, deep desulfurization, operation at ambient temperature and pressure, and minimal energy consumption.</p></div><div><h3>Methods</h3><p>This study introduces a novel photocatalyst, BiVO<sub>4</sub>/MOF-808/CN integrated with carbon quantum dots (BMC-CQD), designed for the oxidative desulfurization of dibenzothiophene (DBT) under visible light irradiation.</p></div><div><h3>Significant findings</h3><p>Novel approach was undertaken by integrating the photocatalyst BiVO<sub>4</sub>, g-C<sub>3</sub>N<sub>4</sub> with MOF-808 and carbon quantum dots to enhance the interaction between semiconductors. This innovative photocatalyst addresses several limitations associated with MOF-808, including enhanced visible light absorption (2.21–2.60 eV), reduced electron-hole recombination, rapid charge transfer, high surface area (1370 m<sup>2</sup>/g), large pore volume (0.908 cm<sup>3</sup>/g). Under optimized conditions of a catalyst dosage of 1.5 g/L, a reaction temperature of 50 °C, an O/S molar ratio of 6, and an initial DBT concentration of 500 mg/L, the 10 %BMC-CQD photocatalyst achieved an impressive 99.5 % DBT removal efficiency in just 25 min. Incorporating CQD into the BMC framework significantly amplifies the removal rate of the DBT by 10.69, 2.13 and 8.7 times compared to the BiVO<sub>4</sub>, MOF-808 and CN, respectively. The radical trapping experiments have shown that the <sup>•</sup>OH and <sup>•</sup>O<sub>2</sub><sup>−</sup> radicals play a key role in the DBT removal process.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"164 ","pages":"Article 105691"},"PeriodicalIF":5.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024003493","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Photocatalytic oxidative desulfurization technology enabling the facile oxidation of these compounds to sulfones, deep desulfurization, operation at ambient temperature and pressure, and minimal energy consumption.

Methods

This study introduces a novel photocatalyst, BiVO4/MOF-808/CN integrated with carbon quantum dots (BMC-CQD), designed for the oxidative desulfurization of dibenzothiophene (DBT) under visible light irradiation.

Significant findings

Novel approach was undertaken by integrating the photocatalyst BiVO4, g-C3N4 with MOF-808 and carbon quantum dots to enhance the interaction between semiconductors. This innovative photocatalyst addresses several limitations associated with MOF-808, including enhanced visible light absorption (2.21–2.60 eV), reduced electron-hole recombination, rapid charge transfer, high surface area (1370 m2/g), large pore volume (0.908 cm3/g). Under optimized conditions of a catalyst dosage of 1.5 g/L, a reaction temperature of 50 °C, an O/S molar ratio of 6, and an initial DBT concentration of 500 mg/L, the 10 %BMC-CQD photocatalyst achieved an impressive 99.5 % DBT removal efficiency in just 25 min. Incorporating CQD into the BMC framework significantly amplifies the removal rate of the DBT by 10.69, 2.13 and 8.7 times compared to the BiVO4, MOF-808 and CN, respectively. The radical trapping experiments have shown that the OH and O2 radicals play a key role in the DBT removal process.

Abstract Image

使用碳量子点装饰的新型 Z 型 BiVO4/MOF-808/CN 光催化剂在可见光下增强二苯并噻吩的氧化脱硫:机理、性能和稳定性
背景光催化氧化脱硫技术可使这些化合物轻松氧化成砜类化合物、深度脱硫、在环境温度和压力下运行,并且能耗极低。本研究介绍了一种新型光催化剂--BiVO4/MOF-808/CN 与碳量子点(BMC-CQD)的集成,设计用于在可见光照射下对二苯并噻吩(DBT)进行氧化脱硫。重要发现通过将光催化剂 BiVO4、g-C3N4 与 MOF-808 和碳量子点集成,增强了半导体之间的相互作用。这种创新型光催化剂解决了与 MOF-808 相关的几个局限性,包括增强可见光吸收(2.21-2.60 eV)、减少电子-空穴重组、快速电荷转移、高比表面积(1370 m2/g)、大孔体积(0.908 cm3/g)。在催化剂用量为 1.5 g/L、反应温度为 50 °C、O/S 摩尔比为 6、初始 DBT 浓度为 500 mg/L 的优化条件下,10 %BMC-CQD 光催化剂在短短 25 分钟内就达到了 99.5% 的 DBT 去除率。与 BiVO4、MOF-808 和 CN 相比,在 BMC 框架中加入 CQD 可显著提高 DBT 的去除率,分别提高 10.69 倍、2.13 倍和 8.7 倍。自由基捕获实验表明,-OH 和 -O2- 自由基在 DBT 去除过程中起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信