Pioneering an effect-based early warning system for hazardous chemicals in the environment

IF 11.8 1区 化学 Q1 CHEMISTRY, ANALYTICAL
{"title":"Pioneering an effect-based early warning system for hazardous chemicals in the environment","authors":"","doi":"10.1016/j.trac.2024.117901","DOIUrl":null,"url":null,"abstract":"<div><p>Existing regulatory frameworks often prove inadequate in identifying contaminants of emerging concern (CECs) and determining their impacts on biological systems at an early stage. The establishment of Early Warning Systems (EWSs) for CECs is becoming increasingly relevant for policy-making, aiming to proactively detect chemical hazards and implement effective mitigation measures. Effect-based methodologies, including bioassays and effect-directed analysis (EDA), offer valuable input to EWSs with a view to pinpointing the relevant toxicity drivers and prioritizing the associated risks. This review evaluates the analytical techniques currently available to assess biological effects, and provides a structured plan for their systematic integration into an EWS for hazardous chemicals in the environment. Key scientific advancements in effect-based approaches and EDA are discussed, underscoring their potential for early detection and management of chemical hazards. Additionally, critical challenges such as data integration and regulatory alignment are addressed, emphasizing the need for continuous improvement of the EWS and the incorporation of analytical advancements to safeguard environmental and public health from emerging chemical threats.</p></div>","PeriodicalId":439,"journal":{"name":"Trends in Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":11.8000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165993624003844/pdfft?md5=d22bb16ad07dba939fea7d9e2cd33321&pid=1-s2.0-S0165993624003844-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Analytical Chemistry","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165993624003844","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Existing regulatory frameworks often prove inadequate in identifying contaminants of emerging concern (CECs) and determining their impacts on biological systems at an early stage. The establishment of Early Warning Systems (EWSs) for CECs is becoming increasingly relevant for policy-making, aiming to proactively detect chemical hazards and implement effective mitigation measures. Effect-based methodologies, including bioassays and effect-directed analysis (EDA), offer valuable input to EWSs with a view to pinpointing the relevant toxicity drivers and prioritizing the associated risks. This review evaluates the analytical techniques currently available to assess biological effects, and provides a structured plan for their systematic integration into an EWS for hazardous chemicals in the environment. Key scientific advancements in effect-based approaches and EDA are discussed, underscoring their potential for early detection and management of chemical hazards. Additionally, critical challenges such as data integration and regulatory alignment are addressed, emphasizing the need for continuous improvement of the EWS and the incorporation of analytical advancements to safeguard environmental and public health from emerging chemical threats.

率先推出基于效应的环境中危险化学品预警系统
事实证明,现有的监管框架往往不足以识别新关注污染物(CECs)并在早期确定其对生物系统的影响。建立 CECs 早期预警系统(EWS)与政策制定的关系日益密切,其目的是主动检测化学危害并实施有效的缓解措施。以效应为基础的方法,包括生物测定和效应定向分析(EDA),为 EWS 提供了宝贵的信息,可准确定位相关的毒性驱动因素,并对相关风险进行优先排序。本综述对目前可用来评估生物效应的分析技术进行了评估,并为将这些技术系统地纳入环境中危险化学品的环境预警系统提供了一个结构化计划。文中讨论了基于效应的方法和 EDA 的主要科学进展,强调了它们在早期检测和管理化学品危害方面的潜力。此外,还讨论了数据整合和监管协调等关键挑战,强调需要不断改进环境预警系统,并结合先进的分析技术,以保护环境和公众健康免受新出现的化学品威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Analytical Chemistry
Trends in Analytical Chemistry 化学-分析化学
CiteScore
20.00
自引率
4.60%
发文量
257
审稿时长
3.4 months
期刊介绍: TrAC publishes succinct and critical overviews of recent advancements in analytical chemistry, designed to assist analytical chemists and other users of analytical techniques. These reviews offer excellent, up-to-date, and timely coverage of various topics within analytical chemistry. Encompassing areas such as analytical instrumentation, biomedical analysis, biomolecular analysis, biosensors, chemical analysis, chemometrics, clinical chemistry, drug discovery, environmental analysis and monitoring, food analysis, forensic science, laboratory automation, materials science, metabolomics, pesticide-residue analysis, pharmaceutical analysis, proteomics, surface science, and water analysis and monitoring, these critical reviews provide comprehensive insights for practitioners in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信