Effective electromagnetic wave absorption strategy: Unlocking the potential of NiCo2O4 as an absorber

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL
Mingyang Gao , Shicheng Wang , Zexuan Wang , Simeng Wang , Yushu Sun , Qianyun Li , Sen Lei , Qiang Li , Zhiyong Zhang , Xiaolong Ma , Wu Zhao
{"title":"Effective electromagnetic wave absorption strategy: Unlocking the potential of NiCo2O4 as an absorber","authors":"Mingyang Gao ,&nbsp;Shicheng Wang ,&nbsp;Zexuan Wang ,&nbsp;Simeng Wang ,&nbsp;Yushu Sun ,&nbsp;Qianyun Li ,&nbsp;Sen Lei ,&nbsp;Qiang Li ,&nbsp;Zhiyong Zhang ,&nbsp;Xiaolong Ma ,&nbsp;Wu Zhao","doi":"10.1016/j.chemphys.2024.112415","DOIUrl":null,"url":null,"abstract":"<div><p>This study addresses a scientific challenge by elucidating the influence of calcination temperature on the properties and electromagnetic wave absorption capabilities of NiCo<sub>2</sub>O<sub>4</sub>, a material whose performance is inherently tied to its preparation process. Specifically, we systematically investigate how varying calcination temperatures not only diversify the material’s composition and morphology but also enhance its electromagnetic wave absorption properties. By controlling the calcination temperature, we not only achieve the successful synthesis of NiCo<sub>2</sub>O<sub>4</sub> but also unravel intricate correlations among calcination conditions, material composition, and wave absorption performance. Notably, NiCo<sub>2</sub>O<sub>4</sub> sample calcined at 400 °C exhibits remarkable electromagnetic wave absorption, marked by an exceptional maximum reflection loss of −53.93 dB and a broad absorption bandwidth spanning 6.24 GHz. These insights contribute to advancing the frontiers of NiCo<sub>2</sub>O<sub>4</sub> utilization, particularly in the realm of electromagnetic wave absorption and beyond, underscoring the novelty and impact of our research.</p></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"587 ","pages":"Article 112415"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010424002441","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses a scientific challenge by elucidating the influence of calcination temperature on the properties and electromagnetic wave absorption capabilities of NiCo2O4, a material whose performance is inherently tied to its preparation process. Specifically, we systematically investigate how varying calcination temperatures not only diversify the material’s composition and morphology but also enhance its electromagnetic wave absorption properties. By controlling the calcination temperature, we not only achieve the successful synthesis of NiCo2O4 but also unravel intricate correlations among calcination conditions, material composition, and wave absorption performance. Notably, NiCo2O4 sample calcined at 400 °C exhibits remarkable electromagnetic wave absorption, marked by an exceptional maximum reflection loss of −53.93 dB and a broad absorption bandwidth spanning 6.24 GHz. These insights contribute to advancing the frontiers of NiCo2O4 utilization, particularly in the realm of electromagnetic wave absorption and beyond, underscoring the novelty and impact of our research.

Abstract Image

有效的电磁波吸收策略:挖掘镍钴氧化物作为吸收剂的潜力
本研究通过阐明煅烧温度对镍钴氧化物(NiCo2O4)特性和电磁波吸收能力的影响,解决了这一科学难题。具体来说,我们系统地研究了不同的煅烧温度不仅如何使材料的成分和形态多样化,而且如何增强其电磁波吸收特性。通过控制煅烧温度,我们不仅成功合成了镍钴氧化物,还揭示了煅烧条件、材料成分和吸波性能之间错综复杂的关系。值得注意的是,在 400 °C 下煅烧的镍钴氧化物样品具有出色的电磁波吸收性能,其最大反射损耗高达 -53.93 dB,吸收带宽宽达 6.24 GHz。这些见解有助于推动镍钴氧化物利用的前沿发展,特别是在电磁波吸收及其他领域,凸显了我们研究的新颖性和影响力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信