{"title":"Laser treatment of (Zr-Ta-W-Ti)C-SiC based high entropy carbide ceramics reinforced with carbon nanotubes, graphite and graphene nanoplatelets","authors":"","doi":"10.1016/j.diamond.2024.111468","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the effect of laser surface treatment on spark plasma sintered (Zr-Ta-W-Ti)C-SiC (ZTaWT-S) based high entropy ceramic (HEC) composites, reinforced with multiwalled carbon nanotubes (CNT) (ZTaWT-SC), graphite (ZTaWT-SG), and graphene nanoplatelets (GNP) (ZTaWT-SGNP). The increased hardness of the laser-treated composites (25–33 GPa) when compared to that of untreated composites (23–28 GPa) is attributed to the high compressive residual stresses, ranging from 1400 to 2900 MPa. The laser-treated ZTaWT-SGNP composite exhibited a minimum scratch wear rate of ∼0.9 × 10<sup>−1</sup> mm<sup>3</sup>/N.m, representing a 57 % and 73 % reduction compared to the untreated ZTaWT-SGNP and the laser-treated ZTaWT-S, respectively. ZTaWT-SGNP composite demonstrated the best resistance to damage accumulation, due to the synergistic effects of laser treatment and GNP reinforcement, enhancing its suitability for extreme environments.</p></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524006812","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effect of laser surface treatment on spark plasma sintered (Zr-Ta-W-Ti)C-SiC (ZTaWT-S) based high entropy ceramic (HEC) composites, reinforced with multiwalled carbon nanotubes (CNT) (ZTaWT-SC), graphite (ZTaWT-SG), and graphene nanoplatelets (GNP) (ZTaWT-SGNP). The increased hardness of the laser-treated composites (25–33 GPa) when compared to that of untreated composites (23–28 GPa) is attributed to the high compressive residual stresses, ranging from 1400 to 2900 MPa. The laser-treated ZTaWT-SGNP composite exhibited a minimum scratch wear rate of ∼0.9 × 10−1 mm3/N.m, representing a 57 % and 73 % reduction compared to the untreated ZTaWT-SGNP and the laser-treated ZTaWT-S, respectively. ZTaWT-SGNP composite demonstrated the best resistance to damage accumulation, due to the synergistic effects of laser treatment and GNP reinforcement, enhancing its suitability for extreme environments.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.